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ABSTRACT

The effects of mutual coupling on several different direction finding algorithms
are investigated. This is done by comparing the spectrum estimates with the ideal, actual,
and corrected signals. The ideal signal assumes no mutual coupling is present while the
actual signal includes all the effects of mutual coupling. It is shown that a terminal
impedance representing the mutual coupling between the terminals of the array can be
derived from the method of moments model of the array. This matrix is applied to the
actual signal vector to produce the corrected signal without mutual coupling. These three
signals are generated for various array geometries with various antenna elements. They
are used to compute the spectra with the Beamformer algorithm, Capon’s algorithm, the
Linear Prediction algorithm and the MUSIC algorithm. The results show that the mutual
coupling has an adverse effect on the resolution capability of the super resolution
algorithms and that its effects can be virtually eliminated from the spectra by pre-
processing the signal with the terminal impedance matrix.

The effects of a near field scatterer on the spectrum generated from the MUSIC
algorithm are also investigated. It is demonstrated that a near field scatterer significantly
reduces the resolution capability of the MUSIC algorithm. This is accomplished with a
linear array and near field scatterer modeled using a hybrid technique that combines the
Method of Moments and the Uniform Theory of Diffraction. The effects of the scatterer
are compensated for using a modified terminal impedance matrix, a new array
configuration, and a modified search vector. Results are presented for various scatterers.

It is shown that the terminal impedance matrix and the new array configuration can be




used to almost completely suppress the effects of a near field scatterer.

Finally, the terminal impedance matrix is applied to actual measurements to
compensate for the effects of mutual coupling. The terminal impedance matrix is also
applied to an array of horn elements. In this case, a new technique for calculating the
terminal impedance matrix from only measurements is press;nted. It is then used to

compensate for the effects of mutual coupling.
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CHAPTER 1

INTRODUCTION

It is often required to estimate the angles of arrival of incident signals. These
signals may be generated by a geophysical phenomenon and received by a ground based
station. They may also be signals received by an airborne platform in a hostile
environment. To determine the spatial spectrum, several techniques have been developed
[5,6,45,54]. These techniques frequently assume that the sensors are ideal and operate
in an ideal environment. In practice, however, this is not true. There is always mutual
coupling between the sensors which distorts the signals. The mutual coupling may have
very drastic effects if the sensor array is designed to be operated over a large bandwidth.
There niay also be an object in the near field of the sensor array which scatterers a
portion of the incident signal toward the array. The scattered fields may effect the
calculation of the spatial spectrum. This scatterer may be an airplane wing, a nearby
building, or the inside of the antenna array’s radome. This work quantitatively determines
the effects of mutual coupling and a near field scatterer on the calculation of the spatial
spectrum. Techniques are also presented to suppress these effects.

Non-parametric methods for estimating the spatial spectrum such as the
Beamformer algorithm are based on the Fourier transform and make no assumptions about

how the data is generated. This algorithm can be applied very efficiently with the Fast




2

Fourier Transform (FFT) vand only requires one snapshot of data [1,2]. If, however,
multiple signals are present, the angle estimates will be biased [S4]. The resolution of
the signals is limited by the Rayleigh Criterion since the algorithm is based on the FFT
[31]. This is true regardless of the Signal to Noise Ratio (SNR). In general, the
resolution of this algorithm is poor since the number of receivers is small. In this study,
the number of receivers is equal to the number of antenna elements. The poor resolution
of these methods led to the development of "super-resolution" algorithms such as Capon’s
algorithm [5], and the MUItiple SIgnal Classification (MUSIC) algorithm [6,45]. These
algorithms are capable of yielding resolution beyond that of the Beamformer algorithm
[45].

The "super-resolution" techniques require first modeling the signal and calculating
the necessary parameters to estimate the spectrum. These techniques are therefore
referred.to as parametric methods. As already stated these techniques offer resolution
greater than that of non-parametric methods for the same number of receivers. These
methods are, in general, not very robust and are susceptible to modeling errors [28].
Since these téchniques require calculating certain parameters first before estimating the
angles of arrival, the resolution of these techniques may be worse than that of non-
parametric methods if the parameters are poorly estimated [28].

The parameters may be poorly estimated for a variety of reasons. Possible sources
of error are gain and phase errors on the signals due to the frequency response of the
receiver, and mutual coupling between the antenna elements. The gain and phase errors

have already been investigated [10-13]. This work is concerned with the effects of




mutual coupling.

The mutual coupling between the antenna elements can degrade the ability of
parametric methods to resolve two signals with a small angular separation [28]. If the
array is designed to resolve two closely spaced narrowband signals over a wide
bandwidth, the mutual coupling effects will be severe at the low end of the frequency
band. This is because the inter-element spacing at the upper frequency band must not
exceed half a wavelength to prevent ambiguities caused by grating lobes in the antenna
pattern. This causes the separation to be much less than half a wavelength at the low end
of the frequency band. The result is strong mutual coupling which degrades the
performance of the direction finding algorithm. One of the purposes of this investigation
is to quantitatively determine the effects of mutual coupling and develop a procedure to
compensate for these effects. Some of the work in this section has already been presented
at a symposium and appeared in the literature [32,33].

The angle of arrival calculations may also be affected by the presence of a
scatterer. If the scatterer is in the far field of the antenna array, the signals incident upon
the array are coherent plane waves. This problem has been investigated for various array
geometries [14-21]. If, however, the object is in the near field of the antenna array, the
interference is in the form of spherical waves. This interference appears to be arriving
at a different angles of arrival for each antenna element. This problem can arise, for
example, when the object is a nearby airplane wing or the inside of the antenna array’s

radome.




1.1 Previous Work

There are many techniques that may be used to estimate the spatial spectrum. The
classical technique is the beamformer algorithm which is based on the Fourier transform
[1,2]. While the technique only requires one snapshot of data, its resolution capability
is limited to that specified by the Rayleigh criterion [31]. The spatial spectrum may also
be estimated with modern techniques such as liner prediction [3,4], Capon’s "maximum
likelihood" algorithm [S], MUSIC [6], and the Estimation of Signal Parameters via
Rotational Invariance Technique (ESPRIT) [7,8,9]. These algorithms are computationally
expensive but have resolution capabilities that exceed the Rayleigh limit [31].

The spectrum produced by super resolution techniques is affected by the number
of snapshots used to form the covariance matrix and by the gain and phase of each
antenna element. The gain and phase errors are introduced because each receiver has a
separate amplifier with a slightly different frequency response. While these errors are
small, they become significant when model based algorithms are used to estimate the
angles of arrival. The effect of using a finite number of snapshots on the MUSIC
algorithm is investigated in [10]. The effects of gain and phase perturbations are analyzed
in [11,12]. A unified treatment of these two problems is presented in [13].

If the signals incident on the array are coherent, the procedure for determining the
angles of arrival must be altered. This problem occurs when one signal is a reflection
from an object in the scene. To overcome this problem a spatial smoothing technique
has been developed [14 - 20] for linear arrays. However, linear arrays do not provide a

full 360° coverage of the scene. To overcome this problem, the spatial smoothing
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technique is extended to circular arrays [21].

Gupta and Ksienski [22] analyzed the performance of an adaptive linear array
taking into account the effect of mutual couplings. They obtained a simple relationship
between the open circuit voltages and the actual voltages at the terminals of the dipoles.
Using this approach several authors [23], [24] studied the performance of the MUSIC [6]
algorithm to determine the direction of arrival (DOA) using dipole arrays and including
the effects of mutual coupling. In [23], Yeh et. al. consider both uncorrelated and
coherent sources and discuss two approaches to counteract the mutual coupling effects.
These modifications involve either modifying the "search vector" using the inverse of the
impedance matrix or reconstructing the signal subspace by solving a generalized
eigenvalue problem. Litva and Zeytinoglu [24] consider the performance of the MUSIC
algorithm using a circular dipole array operating in either free space or above lossy
ground. They found a significant residual bias in their DOA estimates. The
modifications used in [24] to counteract the effects of mutual coupling is the same as in
[23] and involves the transformation of the search vector. Steyskal and Herd [26]
considered a linear array of single mode elements and formulated a coupling matrix which
relates the actual and ideal voltages at the antenna terminals. They also describe an
experimental technique to determine this coupling matrix and its use in beamforming.
Weiss and Friedlander [27,28] modify the MUSIC algorithm to model mutual coupling
effects. Their method, however, only estimates the coupling between the nearest antenna
elements and requires iterating thirty times to obtain a convergent result. This iterative

technique has also been shown to converge to the wrong angles of incidence in some
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cases [36,37]). Swindlehurst and Kailath [29] also modify the MUSIC algorithm to

account for mutual coupling but also only estimate the mutual coupling between an
element and its nearest neighbor. All other coupling is assumed insignificant. Roller and
Wasylkiwskyj [30] modified the input signal to account for the mutual coupling in a
dipole array while assuming the antenna elements to be isotropic. They also examined
the effects of mismatching at the antenna terminals on direction finding. The method
presented here does not alter the MUSIC algorithm, but instead seeks to correct the actual
antenna voltages for the mutual coupling and then process these corrected voltages to
determine the angle of arrival.

The previous work only approximated the mutual coupling effects between an
antenna element and its nearest neighboring element. This coupling is the strongest, but
is not the only significant coupling. The mutual coupling between all the antenna
elements has an effect on the MUSIC spectrum. The results of compensating for all the
mutual coupling present has also been investigated but only for the simplest case. In [38]
Himed and Weiner model a dipole array with the piecewise sinusoidal Galerkin
formulation of the method of moments [35]. They use one sinusoidal mode on each
dipole to represent the current on the dipole. In this case, the impedance matrix from the
method of moments represents the mutual coupling between every antenna element. This
matrix is then successfully used to compensate for the mutual coupling effects. This
procedure, however, is limited to dipole elements that are approximately a half a
wavelength long. It is also only useful for dipoles that are not closely spaced together.

In this case, the mutual coupling does not have a significant effect on the spectrum. If
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the separation between dipole elements is small, then more than one sinusoidal mode is
required to adequately represent the current on the dipole. The result is that the
impedance matrix generated by the method of moments will not be the mutual coupling
matrix. It is shown that the mutual coupling matrix may be extracted from the method
of moments matrix. This allows an estimate of the mutual coupling matrix for other
arrays such as the sleeve dipole array and spiral array [32,33].

A relatively small number of papers appear in the literature on the effects of a
near field scatterer on direction finding algorithms [55-58]. The effect of a near field
scatterer has been investigated in previous work. The effects of radome reflections on
adaptive architures has been addressed in [S5]. The problem of radar pointing error
induced by a radome is investigated in [56]. In this work a ray based technique is used
to account for the scattering by a radome. The effect of boresight error has also been
investigated and compared to experimental results [S7]. The effects of reflections from
radome and mutual coupling between antenna elements is presented in [58]. In this work
it is shown that the radome reflections and mutual coupling between antenna elements
degrades the ability of the MUSIC algorithm to resolve two signals.

1.2 Overview

In chapter 2 the effects of mutual coupling on several different direction finding
algorithms is investigated. This is done by comparing the spectrum estimates due to three
different signals. The first is the ideal signal which assumes no mutual coupling is
present. This represents the best possible spectrum. The actual signals are calculated

from the method of moments model of the array. This signal includes all the mutual
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coupling effects. It is shO\;vn that a terminal impedance representing the mutual coupling
between the terminals of the array can be derived from the method of moments model of
the array. This matrix is then applied to the actual signal vector to correct for the mutual
coupling effects. These three signals are generated for various array geometries with
various antenna elements. These signals are used to compute the spectra with the
Beamformer algorithm, Capon’s algorithm, the Linear Prediction algorithm and the
MUSIC algorithm. The results show that the mutual coupling has an adverse effect on
the resolution capability of the super resolution algorithms and that there effects can be
virtually eliminated from the spectra by pre-processing the signal with the terminal
impedance matrix.

In chapter 3 the effects of a near field scatterer on the spectrum generated from
the MUSIC algorithm are investigated. This scatterer produces interference in the form
of spherjcal waves that degrade the ability of the MUSIC algorithm to resolve two signals
with a small angular separation. To determine the effects of a scatterer, a linear array
with the near field scatterer is modeled using a hybrid technique that combines the
Method of Moments and the Uniform Theory of Diffraction [34,35]. The effects of the
scatterer are then compensated for using a modified terminal impedance matrix and a new
array configuration. The modified terminal impedance matrix accounts for the additional
mutual coupling between the array and scatterer. The new array configuration is used to
suppress the spherical waves from the scatterer. To account for the new array
configuration, the search vector of the MUSIC algorithm is modified. Results are

presented for various scatterers. It is shown that the terminal impedance matrix and the
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new array configuration can be used to virtually completely suppress the effects of a near
field scatterer.

In chapter 4, the terminal impedance matrix is applied to actual measurements to
compensate for the effects of mutual coupling. This is first done on a variety of
monopole arrays. The terminal impedance matrix is also applied to an array of horn
elements. In this case, a new technique for calculating the terminal impedance matrix
from only measurements is presented. It is then used to compensate for the effects of
mutual coupling.

The conclusions are presented in chapter 5 and various Appendices are included
before the references are given. In chapter 5, all the work is summarized. Avenues for
future investigation are also discussed. The contributions of this work are also outlined
in this chapter. Appendix A presents the method of moments which is used to model the
antenna arrays. Appendices B through E describe the direction finding algorithms. The
last Appendix describes the hybrid method of moments - Uniform Theory of Diffraction

technique for modeling the near field scatterer and the linear array.




CHAPTER II
DIRECTION FINDING IN THE PRESENCE OF

MUTUAL COUPLING

Direction finding systems are often required to work well on narrow band signals
which may occur over a wide range of frequencies. This requires that the inter-element
spacing be less than half a wavelength at the highest frequency of operation to avoid the
ambiguities that arise from the formation of grating lobes. Therefore, at the low end of
the frequency band, the inter element spacing is electrically small leading to significant
mutual coupling between the antenna elements. This mutual coupling degrades the ability
of the direction finding algorithm to resolve two signals with a small angular separation.

’I"o determine quantitatively the effects of mutual coupling, the angles of arrival
are calculated with the ideal, actual, and corrected signals. The ideal signal assumes that
there is no mutual coupling between the antenna elements. This yields the best possible
spatial spectrum. The actual signal is the voltage that would be measured at the
terminals of the antenna elements. This signal is calculated from an electromagnetic
model of the antenna array and includes all the effects of mutual coupling. The corrected
signal is obtained by processing the actual signal with the terminal impedance matrix
which models the mutual coupling between the antenna elements. It will be shown that

this removes virtually all the effects of mutual coupling in the signal. The result is that

10
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the new spectrum is almost identical to the ideal case.

Three antenna elements are used to form the direction finding antenna arrays. The
first element, the dipole, is the simplest but can only be operated over a narrow band of
frequencies. Therefore, it is useful only for theoretical investigations. The second
element, the sleeve dipole, is a modification of the dipole and can be operated over a one
octave bandwidth. The spiral antenna is the third element and is referred to as a
frequency independent antenna since it is possible to operate it over a one decade
bandwidth or more.

The antenna elements are formed into linear, cross, and circular arrays for the
direction finding algorithms. The linear array is useful for resolving angles of arrival over
a range from 0° to 180°. The cross and circular arrays can be used over a full 360°
angular coverage. The spiral antenna is only used in a linear array since its physical size
limits its usefulness in direction finding over a large bandwidth as will be shown later.

The antenna arrays are used with several different direction finding algorithms to
determine the effects of mutual coupling and the usefulness of the compensation
technique described later. These techniques are the Beamformer algorithm, Capon’s
algorithm, the Linear Prediction algorithm, and the MUSIC algorithm. It will be shown
that the direction finding capability of the algorithms is improved by compensating for
the mutual coupling.

2.1 Ideal, Actual and Corrected Voltages

The direction finding algorithms are examined with the ideal, actual, and corrected

signals. The ideal signal assumes that there is no mutual coupling between the antenna
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elements. Mathematically, the voltage at the M™ antenna element can be expressed as

V, = g B (xycosd + y,cosd) ,jut (1)

where B is the propagation constant, ¢ is the angle of arrival with respect to the x - axis,
xy and yy, are the location of the M™ antenna elements, and w is the temporal frequency.
This signal assumes that there are no gain or phase errors. These errors occur since the
frequency response of each antenna element amplifier may be slightly different.

The actual signal at the terminals of the antenna array is calculated with the
reaction integral equation. This is one of several integral equations that may be used
[42]. This equation is then solved using the method of moments [40,41]. The result is
a complex constant for each of the antenna terminals. The time variation is then added

so that the signal at the M™ antenna element may be expressed as

v, = A eltedot )

where AMej"”‘ is the complex constant from the method of moments model of the

antenna array. This constant is not only a function of the incident field at the antenna
elements but also the mutual coupling between the array elements.

The corrected signal at the M™ antenna element is found by multiplying the actual
signal in equation (2) by the terminal impedance matrix. The terminal impedance matrix
represents the mutual coupling between the antenna elements and is derived from the

moment method model of the antenna array. Mathematically, the corrected signal is
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. 9.7
121 2y 2y Ziy Ale ’

v, Zy Zyp ™ Zay Azejwz e 3)

VH ZMI Zm hhdd Zm AMejWMJ

where V,, V,, ..., Vy are the corrected voltages, Z; is the mutual coupling between

antenna elements i and j, and Alej"l , Azej‘rz ,and A Mej"’“ are the complex

constants from equation (2).
2.2 Electromagnetic Model of the Antenna Array

The reaction integral equation is used to determine the current induced on an
antenna illuminated by a plane wave. The current on the antenna is represented with
overlapping piecewise sinusoids as shown in figure 1. The integral equation is then
reduced to a system of linear equations with the method of moments as described in
Appendix A. The system of equations is solved to yield the current at all points on the
antenna. The voltage at the antenna terminals is computed by multiplying the current at
the antenna terminals by the load impedance for the element.

Using the method of moments, the integral equation is reduced to the system of
equations

N
Y ZwIn=V, m=1,2,...,N 4)

n=1

whete 7, = [J,Eds ©




Figure 1: Piecewise Sinusoidal Current Expansion on One Dipole

and v, = -[3,-E'ds - (©)
8

In these equations Z_, is the mutual coupling between modes m and n, I, and I, are the
currents at modes n and m respectively, V,, is the excitation at mode m, E'is the incident
electric field, and ds is the differential length along one dipole.

The number of piecewise sinusoids needed to adequately represent the current on
a thin wire antenna is dependent upon the length of the antenna element. Since the dipole
elements are approximately half a wavelength long at the center of the bandwidth, the
current on them can be adequately represented by three piecewise sinusoidal modes. Note
that from equation (5) that the impedance matrix Z, is not dependent upon the incident
field. This matrix is unique to the geometry of the antenna array and the frequency of

the incident signal. The frequency is important because the it determines the number of
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piecewise sinusoids that must be used to adequately represent the current on the antenna
element. Note, in contrast, that the excitation V, is dependent upon the incident field and
therefore the angle of arrival.

After Z__ and V_ are calculated, the modal current on the antenna elements is

found using equation (4). The voltage at the n™ terminals is then calculated with

vie =15z (7)

where 1™ is the modal current at the n" terminals of the antenna array, and Z, is the load
impedance at the n® terminals. Therefore, the voltage vector representing the actual

signal that includes the effects of mutual coupling is

v, = [vire vie .. velr ®

This voltage should not be confused with the voltage in equation (4).
2.3 Correction of the Actual Voltage Vector

The impedance matrix Z,, and the voltage vector V  are calculated using
equations (5) and (6). The current on the antenna elements is then found using equation
(4). Unfortunately, since there is mutual coupling between the antenna elements as
described by Z_,, the voltage V_ will be corrupted by this mutual coupling. The
objective of the next section is to derive a terminal impedance matrix which describes the
mutual coupling between the antenna elements in terms of the mutual coupling between
the sinusoidal modes m and n. Mathematically, the objective is to reduce equationl(4)

which is repeated below for convenience
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N
Y ZpI, =V, m=1,2,...,N €)
n=1
to
EZuIl— k=1,2,...,M (10)

where Z_, is the mutual coupling between piecewise sinusoidal modes m and n, I, is the

n" piecewise sinusoidal current, V,, is the current at the m™ mode, zZ¢ is the mutual

coupling between the k™ and I"* antenna elements, I, is the I terminal current, and V, is
the voltage at the k™ antenna terminals. Note that since the current on the entire antenna
structure was found using equation (4), the current I, is already known. It therefore
remains only to calculate the terminal impedance matrix Z™,;.
2.3.1 Terminal Impedance Matrix

Let there be M antenna elements in the array with the current on each element
represented by N,, modes. The size of the impedance matrix Z,, is N x N where N =M
x N,. The oi)jective is to reduce this matrix to M x M matrix whose elements represent
the reaction between the antenna terminals.

The mutual impedance between the terminals k and 1 is defined as [17]
Vil an

’
Te
1

Te _
Zg) =
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where V,,™ is the open circuit voltage at the k™ antenna terminal due to the current on the

1™ antenna terminal. The open circuit voltage can be expressed mathematically as,

vie = -—= [ EgI*dl, (12)
k kthantenna

where 7 is the incident field at the k™ antenna due to the 1" antenna. Noting that the

current on the antenna is expanded as a finite series of piecewise sinusoidal functions, the

currents on the I* and k™ antenna elements of the array are given by,

IN,
It= Y  IjF(2) (13)
p=1+(I-1) N,
. kN,
k= Y IpF.(2) (14)

m=1+(k-1) N,

where F,(z) are the piecewise sinusoidal expansion functions [40] and Ipl and I_* are the
mode currents on the I'® and k™ antenna elements respectively. The electric field at the
k'™ antenna element due to the 1" antenna element is shown graphically in figure 2 and

may be written as

kN,
Ekl = E E”',l G(Z—Zm) s (15)
m=1+{k-1) N,
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Figure 2: Geometry for the Derivation of the Terminal Impedance
Matrix

where F 1 is the field at the m™ mode due to the current I' on the 1™ antenna element
and G(z - z,) is unity over the m™ mode and zero elsewhere. The electric field E

is also shown graphically for a dipole array in figure 2. The electric field £ is the

sum total of the field from all the modes on the I* antenna. This field may be expressed

as,

1N,
L S - (16)

p=1+(1-1) Ny,

[

Substituting equation (16) into equation (15) yields,
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kN, IN,

Bya= Y Y By Glz-z,) - (17
m=1+(k-1) Ny p=1+{(1-1) Ny,

Substituting equation (17) in equation (12) yields,

kN, N,

vig = -—= ) Y B, Glz-z,) |-T*dl
Tx ehaprennal™L* (K=1) Ny p=1+(I-1) N,

1 kN, 1N,

Te - 1 - _ .—ok

v Ly ) [ EBpoelz-z,)-I*dl
Ly m=1+(k-1) Ny p=1+(1-2) Ny peha e onna
] kN, 1N,

.Vlg'le - - = Emp.Im dl - (18)
Iy m=1+(k-1) Ny p=1+(1-1) Np p e oo

Note that mutual impedance between modes m and p is given by,

= tm - __1 7 .Imd] - 19
Zw = 2= TTg [ EprImdl (19)

P pthpode

Rearranging this equation yields,

- [ EpIndl = z,I,I, - (20)

m*tBmode
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Substituting equation (20) into equation (18) yields,
kN, 1IN,
1

Vit = -— Y -ZpI.I - (21)
I m=1+(k-1)Np p=1+(1-1) N,

Therefore,
VT‘ 1 kN- IN.
A zZ IL kl=12..M. (22)
I¥  IFme@y, p=1+(zl-:1)N_ e

Once the terminal impedance matrix Z™ is determined, the corrected voltage
matrix v, is readily obtained using

v, = Z™ 1™, (23)
where,

I™ = [1,", L%, .., L,/™]" (24)
The actual terminal currents I_™ are obtained from equation (4) and are the same as in
equation (7).

Note from equation (22) that if there is only one piecewise sinusoidal mode on
each dipole, (i.e. N, = 1) then Z™, = Z_.. In other words, if there is only one piecewise
sinusoidal mode on each dipole, the terminal impedance matrix reduces to the impedance
matrix in equation (4). The mutual coupling effects can then be easily compensated for
since this matrix is calculated using equation (5). This is exactly the correction procedure

used in [38]. Unfortunately, the current on the antenna element can only be accurately
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represented with one mode for half wavelength dipoles that are reasonably far apart [35
pp. 325-327]. For longer dipoles or dipoles that are close together, the current can not
be accurately estimated with one mode. Single mode representation is also not possible
for the sleeve dipole or the spiral antenna.
2.4 Antenna elements

Three antenna elements are used to design antenna arrays that operated over a one
octave bandwidth from 200 MHz to 400 MHz. The first element is the dipole with a
length of half a meter. This length corresponds to half a wavelength at the center of the
operating frequency band. The dipole, however, is inherently a narrow band element
since its input impedance varies greatly over the bandwidth of the array as shown in
figure 3. The large variation in the input impedance creates a large variation in the
reflection coefficient. This means that at the edges of the operating band, large amounts
of power will be reflected by the dipole. This limits the use of the dipole to narrow band
applications. However, since the radiation pattern of the dipole does not change
significantly over the frequency bandwidth, it is still useful for theoretical investigations.

The sleeve dipole is a dipole with two parasitic elements placed very close to it
as shown in figure 4. The parasitic elements are referred to as sleeves since they reside
very close to the dipole. The effect of the sleeves is to broaden the operating bandwidth
of the dipole without significantly affecting its radiation pattern. Referring to figure 4,
the parameters of the sleeve dipole are: H = 0.513 meters, L = 0.2888 meters, S = 0.051
meters, and D = 0.029 meters. The wire diameter of the sleeve dipole is significantly

larger than that of the ordinary dipole. For the sleeve dipole the wire diameter is 0.029
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Figure 3: Input Impedance of Dipole, Sleeve Dipole and Spiral Antennas

meters while for the dipole described previously the wire diameter is 0.0008 meters. It
is necessary to increase the diameter of the dipole to achieve the one octave bandwidth.
The sleeve dipole is modeled using three piecewise sinusoids on both the dipole and the
sleeves. A detailed discussion of the design of the sleeve dipole can be found in [35].
The variation of the input impedance of the sleeve dipole is shown in figure 3.
Notice that the magnitude of the input impedance does not vary nearly as much as that
of the dipole. Since its input impedance and radiation pattern do not vary significantly
over the one octave bandwidth, the sleeve dipole is a practical broadband element.

The spiral antenna has significant size in two dimensions and is referred to as a
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Figure 4: Sleeve Dipole

frequency independent antenna since it can be operated over an arbitrarily prescribed
bandwidth. A spiral antenna for the operating range of 200 MHz to 400 MHz is shown
in figure 5. This antenna is referred to as an archimedean spiral and its design is

discussed in [43]. The antenna in figure 5 is described by the equations

~
]

ad, 4.17 < ¢, < 31.6 (25)

~
]

ad, 1.03 < ¢, < 285 (26)

where a = 0.072 meters, and r is the radial distance from the coordinate origin to a point
on the spiral.

To model the spiral antenna with the thin wire method of moments code, the spiral
is simulated with 84 straight wire segments as shown in figure 6. This yielded 83

piecewise sinusoidal modes for one spiral. The input impedance of the spiral antenna in




24

0.4 T i i T 1 T T

03

0.2

0.1F -

Distnace (meters)

_0-4 L i 1 1 1 1 1
-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4

Distance (meters)

Figure 5: 200 MHz to 400 MHz Spiral Antenna

0.4 T T T T T T T

Distance (meters)
o
o -t

T T

1 1

|
o
Jry

T

1

_0‘4 1 1 1 L 1 1 1
-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4

Distance (meters)
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figure 6 is shown in figure 3. Notice that the magnitude of the input impedance is very
flat indicating the broadband characteristic of the antenna element.
2.5 Antenna Arrays

The three antenna elements described in the previous section are formed into
linear, cross, and circular arrays. The linear array is useful for resolving angles of
incidence over 2 quadrants in one plane while the cross and circular arrays can resolve
angles over all four quadrants in one plane. In all cases the arrays are designed to resolve
narrow band signals occurring over a one octave bandwidth from 200 MHz to 400 MHz.
They are also each composed of nine antenna elements. This requires 27 piecewise
sinusoidal modes for the dipole array, 81 modes for the sleeve dipole array, and 747
modes for the spiral array. Each of the array elements are terminated with the complex
conjugate of the input impedance. The arrays are illuminated with a vertically polarized
plane wave with the electric field vector parallel to the dipole and sleeve dipole elements
and in the same plane as the spiral antenna.

The first array is a linear array of dipoles. As stated before, the dipoles are half
a wavelength long at 300 MHz. The dipoles are separated by 0.375 meters along the x -
axis. This is the largest spacing that does not produce any grating lobes anywhere within
the bandwidth of the array. Grating lobes are undesirable since they yield ambiguous
angles of arrival.

The linear sleeve dipole array is also arrayed along the x - axis with the dipoles
oriented parallel to the z - axis. The view of the sleeve dipole array from the z - axis is

shown in figure 7. The dipoles are again separated by 0.375 meters to prevent the
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Figure 7: Linear Sleeve Dipole Array

formatioﬁ of grating lobes. As shown in the figure, the sleeves are placed very close to
the dipoles as described in section 2.4.

The cross array is capable of resolving angles of arrival over a full 360° [48].
This array is composed of two orthogonal equally spaced linear arrays that share a
common element in the middle of each array. This array can be thought of as an
unequally spaced, unequally excited linear array. Therefore, there is no clear spacing
which does not produce grating lobes. It is found, however, that a spacing of 0.3 meters
is sufficient to prevent ambiguous angles of arrival over the entire operating band.

The cross sleeve dipole array is shown in figure 9. This array is the same as the

cross array except that it contains sleeves around each element. As shown in figure 8,
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the sleeves are always parallel to the y - axis.

The circular dipole array and circular sleeve dipole array are also capable of
resolving angles of arrival over a full 360°. These arrays are shown in figures 10 and 11.
They are also modeled using an unequally spaced, unequally excited linear array [47].
It is found that ambiguous angles of arrival could be avoided with an array radius of
0.375 meters.

The spiral element is only used in a linear array configuration. Unfortunately,
because of the significant size of the spiral, it is impossible to array the elements such
that the element spacing is less than half a wavelength for all frequencies within the
operating bandwidth. Therefore, grating lobes are unavoidable and produce ambiguous
angles of arrival. This prevents the spiral from being used in an array to resolve angles
of arrival over a frequency range of 200 MHz to 400 MHz even though the spiral can be
successfully operated over this frequency bandwidth.

2.6 Computer Simulations

The effect of mutual coupling on direction finding algorithms is investigated by
examining the spectrum of four different direction finding algorithms with three different
signals. The ideal signal from equation (1) is used to determine the best possible
spectrum under the given conditions. This signal assumes that there is no mutual
coupling between the antenna elements. The "actual" signal from equation (8) is used to
determine the effects of mutual coupling on the spatial spectrum. The corrected signal
from equation (23) is used to determine the improvement in the spatial spectrum when

the mutual coupling between the antenna elements is taken into account.
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The ideal, actual, and corrected signals were applied to each of the arrays in
section 2.5. The spectrum is calculated with the Beamformer, Capon’s, linear prediction,
and MUSIC algorithms to determine the effects of the correction procedure on the
direction finding algorithm. These four algorithms are described in detail in appendices
A through D.

The mutual coupling effects are analyzed by considering one array with K
uncorrelated plane waves. This is shown graphically in figure 12 for a linear array. For
the actual linear array described in section 2.5, d, = 0.375 + d_, and d, = 0.0 for n = 2,
3, .. M

In all the simulations two non-coherent, single frequency, equal power sources in
the far field of the antenna array are used to determine the effects of mutual coupling on
the resolution capabilities of the algorithms. This implies that the signals are narrowband
plane waves when they are incident upon the array. This also implies that the amplitude
of the signal across the array is approximately constant. The sources are also assumed
to be ergodic so that their statistics can be calculated with one realization of the signal.
The signals are each composed of 300 snapshots of data taken at 1 GHz. This sampling
frequency is well above the Nyquist rate for all frequencies within the operational
bandwidth of the array. The two signals are offset by 5 MHz so that they would not be
coherent which is necessary for the MUSIC algorithm. The signal to noise ratio is fixed
at 10 dB where the signal power is the sum of the power in each of the two signals. The
noise at each of the antenna elements is zero and Gaussian. The noise sources are

uncorrelated and thererfore are also independent since they are Gaussian. The
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Figure 12: Geometry of Array and Sources

calculations assume that temporal filtering is done prior to the spatial filtering. Therefore,
the signals in the spatial spectrum have approximately the same frequency but are not
coherent. The spectra shown are a normalized average of 20 simulations computed every
0.1°. The covariance matrix for the two signals is estimated using the "covariance
method" which produces an unbiased positive semi-definite matrix [46]. This matrix is
used to compute all the spectra for each of the direction finding algorithms.
2.6.1 Beamformer Algorithm

The beamformer algorithm computes the spectrum by scanning the main beam of

the antenna pattern. While this algorithm is very simple, its resolution capability is the
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worst of the four algorithrﬁs and is limited by the Rayleigh criterion [46]. The spectrum

for this algorithm is given by
P($) = a(®)" R a($) @7)

where R is the covariance matrix and a(¢) is the search vector given by the expression

a(d) = [efﬂ(‘n““ +ysnd) | JBGxycoeb + x.dlw)]?' (28)

In equation (28) (X\,y») is the location of the M™ antenna element and ¢ is the search
angle. This algorithm is robust with respect to mutual coupling. Its performance is also
unaffected if the signals are coherent. The beamformer algorithm is described in detail
in Appendix A.

The resolution of the algorithm is dependent upon both the angle of incidence and
the frequency of operation. This can be shown by examining the beamwidth of the
radiation pattern. The beamwidth between first nulls (BWFN) in the antenna pattern of

a long equally spaced linear array where the length of the array is much larger than a

wavelength is [35, pp. 128-129].

BWFN = 22 (near ¢ = 90°) (29)
Nd

and
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BWFN =2 % (near ¢ = 0°, and 180°). (30)
J N

where A is the wavelength, N is the number of elements in the array, and d is the spacing
between elements. Notice that the beamwidth increases as the antenna is scanned away
from broadside. Since the Rayleigh criterion requires that the peaks in the main beam
for two signals be separated by at least a half a beamwidth, the resolution capability
decreases as the antenna is scanned toward endfire. Notice also from equations (29) and
(30) that the BWFN increases as the wavelength increases. Therefore, the resolution
capability improves as the frequency is increased. This is clearly evident in the
Beamformer spectra in figures 13 through 24.

Figures 13 and 14 show the spectra for the linear dipole array at the upper and
lower frequency limits of the operational bandwidth. Notice that in both figures, the ideal
and corrected spectra are virtually identical. Notice that the actual signal with mutual
coupling yields angles of arrival that are actually slightly closer to the true angles of
arrival than the ideal and corrected spectra. In this case, the mutual coupling causes
destructive interference which has the effect of moving the signals farther apart. Notice
also the resolution capability of the algorithm is clearly better at the upper frequency.

The spectra for the linear sleeve dipole array are shown in figures 15 and 16.
Notice that the results are about identical to the dipole array in figures 13 and 14. This
occurs because the beamformer algorithm is rather robust with regards to mutual coupling.

The added mutual coupling due to the sleeves has very little effect upon the beamformer




T T T T T

ideal: peaks at 46.7,73.4
- actual: peaks at 45.2,73.6 1
- - corrected: peaks at 46.6,73.4

Spectrum (dB)
1
=)

-12

—14}

-16}

_18 1 1 1 1 | 1 1 1
0 20 40 60 80 100 120 140 160 180

Angle (deg)
Figure 13: Beamformer, Linear Dipole Array, Angles = 45°, 75°,

Frequencies = 200, 205 MHz

ideal: peaks at 44.6,75.5
- actual: peaks at 45,75.5 -
- — corrected: peaks at 44.6,75.5

-2

-4

-6

Spectrum (dB)
1
o

L
N

-14

-16

-18

_20 )l 1 1 L 1 1 1 i
0 20 40 60 80 100 120 140 160 180

Angle (deg)
Figure 14: Beamformer, Linear Dipole Array, Angles = 45°, 75°,
Frequencies = 395, 400 MHz




T T T T T

ideal: peaks at 46.7,73.4
- actual: peaks at 44.1,73.9 8
- - corrected: peaks at 46.6,73.4

Spectrum (dB)
§
=

-12

-18 il 1 1 1 1 ) A1 1
0 20 40 60 80 100 120 140 160 180

Angle (deg)
Figure 15: Beamformer, Linear Sleeve Dipole Array, Angles = 45°, 75°,

Frequencies = 200, 205 MHz

T T ] T L]
ideal: peaks at 44.6, 75.5

-  actual: peaks at 45.1, 75.6 :

- - corrected: peaks at 44.6, 75.5

Spectrum (dB)
[}
S

-12

-14

-16

80 100 120 140 160 180
Angle (deg)
Figure 16: Beamformer, Linear Sleeve Dipole Array, Angles = 45°, 75°,

Frequencies = 395, 400 MHz

-18
0]




36
spectrum.

The spectra for the cross dipole and cross sleeve dipole array are shown in figures
17 through 20. Notice that in figure 17, the mutual coupling prevents the algorithm from
resolving the two signals. At the upper frequency in figure 18, the signals are clearly
resolvable. Notice, however, that the angle estimates with mutual coupling present are
actually slightly better than without mutual coupling. This is again due to the destructive
interference of mutual coupling. The spectra for the cross sleeve dipole array in figures
19 and 20 are almost identical to the cross dipole array. Again, this is due to the fact that
the added mutual coupling due to the sleeves has very little effect on the performance of
the algorithm.

The spectra for the circular dipole array are shown in figures 21 and 22. Notice
that in figure 21 the circular array is unable to resolve the signals with mutual coupling
but is ju‘st able to resolve the signals for the ideal and corrected signals. At the upper
frequency in figure 22, the signals are clearly resolvable since the resolution capability
of the algorithm is better.

The results for the circular sleeve dipole array are shown in figures 23 and 24. In
figure 23 the mutual coupling causes the estimated angles of arrival to be much closer to
the actual angles than the ideal or corrected signals. Again, this is due to the mutual
coupling effects. In figure 24 at the upper frequency, the signals are clearly resolvable
with and without mutual coupling.

The results presented for the Beamformer algorithm are summarized in Table 1.

Notice that in almost all cases the mutual coupling has very little effect on the spectrum.
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Therefore, once this coupling is removed, the improvement in the spectrum is also very
small. In some cases, as in figure 22, the actual signal with the mutual coupling actually

yields angles of arrival closer to the true angles.




Table 1 Beamformer Algorithm, SNR = 10 dB
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Array Freq Angle Ideal Actual Corrected
(MHz) | (deg) (deg) (deg) (deg)

Linear 200, 45.0, 46.7, 73.4 45.2, 73.6 46.6, 73.4
Dipole 205 75.0

Linear 395, 45.0, 44.6, 75.5 45.0, 75.5 44.6, 75.5
Dipole 400 75.0

Linear 200, 45.0, 46.7, 73.4 44.1, 73.9 46.6, 73.4
Sleeve 205 75.0

Dipole

Linear 395, 45.0, 44.6, 75.5 45.1, 75.6 44.6, 75.5
Sleeve 400 75.0

Dipole

Cross 200, 45.0, 57.0, 101.8 106.0 57.0, 101.8
Dipole 205 110.0

Cross 395, 45.0, 459, 113.1 44.7, 111.3 46.0, 113.0
Dipole 400 110.0

Cross 200, 45.0, 57.0, 101.8 105.3 56.7, 101.6
Sleeve 205 110.0

Dipole

Cross 395, 45.0, 45.9, 113.1 473, 112.5 45.9, 112.9
Sleeve 400 110.0

Dipole
Circular 200, 45.0, 60.0, 115.3 123.5 60.4, 115.1
Dipole 205 130.0
Circular 395, 45.0, 45.8, 129 46.4, 130.4 45.9, 129.1
Dipole 400 130.0
Circular 200, 45.0, 60.0, 115.3 48.7, 128.1 59.8, 114.8
Sleeve 205 130.0

Dipole
Circular 395, 45.0, 45.8, 129 46.3, 131.2 45.9, 129.4
Sleeve 400 130.0

Dipole
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2.6.2 Capon’s Algorithm

In this section the effects of mutual coupling and the compensation procedure are
investigated with Capon’s algorithm. This algorithm is also referred to as the "Maximum
Likelihood" method or the "Minimum Variance Distortionless Response" method because
it is designed to minimize the output power subject to the constraint that the output equals
unity at the observation angle [5,46]. The spectrum for this method is computed with the

equation

P@) = ——— (31)
a@" R™ a(¢)

where R is the inverse of the covariance matrix and a(¢) is the search vector given in
equation (28). This algorithm is described in detail in Appendix C.

Figures 25 and 26 show the spectra for Capon’s algorithm at the lower and upper
frequency limits of the operational bandwidth of the array. Notice from figure 25 that
at the lower frequency limit, the signals can not be resolved even in the ideal case. In
figure 26 it is clear that at the upper frequency limit, the signals can be resolved
regardless of whether mutual coupling is considered in the analysis although the ideal and
corrected spectra yield a better estimate of the actual angles of arrival.

The spectra for the linear sleeve dipole are shown in figures 27 and 28. The
results are virtually the same as that of the linear dipole array in figures 25 and 26 with
the exception that the actual signal in figure 28 with mutual coupling present contains a

peak at 46.7° which is slightly farther away from the true angle of arrival than for the
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linear dipole array in figure 26.

Figures 29 and 30 show the results for the cross dipole array. In figure 29, the
signals can not be resolved even for the ideal case. At the upper frequency in figure 30
the signals can be resolved. The corrected spectrum in figure 30 yields a better estimate
of the angles of arrival than the actual signal with mutual coupling.

The spectra for the cross sleeve dipole array are shown in figures 31 and 32. As
before, Capon’s algorithm is unable to resolve the two angles at the lower frequency
limit. Figure 32 shows that the mutual coupling prevents the algorithm from resolving
the two signals at the upper frequency limit. This is due to the added mutual coupling
from the sleeves since the same case did yield two signals for the cross array as shown
in figure 30.

Figures 33 and 34 show the spectrum for the circular dipole array. At the lower
frequency limit, the signals are not resolvable as shown in figure 33. In figure 34, the
signals can be separated. Notice, however, that for the circular array, the mutual coupling
causes the signals to deviate away from each other instead of appears as one signal.

Figures 35 and 36 show the results for the circular sleeve dipole array. Again, at
the lower frequency limit in figure 35, the. signals are not resolvable. At the upper
frequency, the mutual coupling due to the sleeves causes the two signals to appear as one
rather than two well separated signals as in figure 34.

The results for Capon’s algorithm are summarized in Table 2. Note that the
calculated angles of arrival for the ideal and corrected cases are almost identical. This

is because the spectra for the ideal and corrected signals in figures 25 through 36 are
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Tabfe 2: Capon’s Algorithm, SNR = 10 dB
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Array Freq Angle Ideal Actual Corrected
(MHz) | (deg) | (deg) (deg) (deg)

Linear 200, 45.0, 49.7 49.7 49.6
Dipole 205 55.0

Linear 395, 45.0, 45.2.55.3 46.1, 56.0 45.2, 55.3
Dipole 400 55.0

Linear 200, 45.0, 49.7 49.8 49.6
Sleeve 205 55.0

Dipole

Linear 395, 45.0, 45.2, 55.3 46.7, 55.9 45.2, 55.3
Sleeve 400 55.0

Dipole

Cross 200, 45.0, 57.8 58.4 58.2
Dipole 205 70.0

Cross 395, 45.0, 45.8, 70.0 43.1, 70.1 45.8, 69.8
Dipole 400 70.0

Cross 200, 45.0, 57.8 53.7 58.1
Sleeve 205 70.0

Dipole

Cross 395, 45.0, 45.8, 70.0 43.3 45.7, 69.8
Sleeve 400 70.0

Dipole
Circular 200, 45.0, 57.8 57.1 58.1
Dipole 205 70.0
Circular 395, 45.0, 47.5, 67.8 42.9, 72.0 47.5, 67.8
Dipole 400 70.0
Circular 200, 45.0, 57.8 54.3 58.0
Sleeve 205 70.0

Dipole
Circular 395, 45.0, 47.5, 67.8 66.4 48.7, 67.4
Sleeve 400 70.0

Dipole
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2.6.3 Linear Prediction

The linear prediction algorithm for spectrum estimation is described in detail in
Appendix D. This technique attempts to estimate the spectrum by predicting one of the
antenna element’s outputs as a linear combination of the other elements. The coefficients
used in the linear combination are chosen so that the mean square error of the predicted

element is minimized. The resulting spectrum in this case is given by the equation

1
P(¢p) = (32)
¢ a(d)#(a) (A% a(d)
1]
0
where 2 = p-1 |0 33)
-0-

R! is the inverse of the covariance matrix, and a(¢) is the search vector given by equation
(28).

Figures 37 and 38 show the spectra for the linear dipole array. In figure 37 the
ideal signal yields a spectrum with two peaks that are approximately the same amplitude.
This causes the appearance of only one peak while actually two peaks exist. The
spectrum for the actual signal shows two very sharp peaks close to each other. Although
these peaks could be said to correspond to the two signals, it is more likely that one peak
is splitting into two peaks. This phenomenon is known as peak splitting or spectral line
splitting (SLS) and is due to the estimate of the covariance matrix [49]. In particular, it
is due to a biased covariance matrix and a second term in the covariance estimate which

is phase dependent [49]. If the biased covariance matrix is replaced by an unbiased
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matrix, SLS still occurs for some initial phases [49]. Kay and Marple suggest using the
Least Squares approach to remedy the problem for multiple sources [49]. However, even
the least squares approach is not immune to SLS [55]. In figure 38, the ideal, actual, and
corrected spectra yield angles of arrival that are very close to the true angles of arrival.
Notice, however, that the actual and corrected spectra show more than two peaks. It is
shown later that this peak splitting also occurs, in some cases, for the ideal spectrum.

Figures 39 and 40 show the spectra for the linear sleeve dipole array. Again, the
ideal spectrum in figure 39 contains two peaks of approximately the same amplitude.
This makes the two peaks appear as one. The actual and corrected spectra only show one
peak approximately half way between the angles of arrival. In figure 40, all three spectra
yield peaks at approximately the angles of arrival. The corrected spectrum, however,
contains an extra peak due to peak splitting.

The spectra for the cross dipole array are shown in figures 41 and 42. Notice that
the spectrum for the ideal signal in figure 41 suffers from peak splitting. The mutual
coupling causes the spectrum from the actual signal to yield only one angle of arrival
while the corrected signal yields a spectrum with two angles of arrival. At the upper
frequency limit, all three spectra suffer from peak splitting. The spectra all show at least
four angles of arrival when only two signals are present. Notice also that the peaks in
the spectrum with mutual coupling move away from rather than toward each other as in
previous cases. While the corrected spectrum shows the most peaks, all the peaks are
very close to the true angles of arrival.

Figures 43 and 44 show the spectra for the cross sleeve dipole array. Note that
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figure 43 is very similar to figure 41 except that the estimated angle of arrival with the
actual signal is much farther away from the true signals. At the upper end of the
bandwidth in figure 44, all three spectra suffer severely from peak splitting.

The spectra for the circular dipole array are shown in figures 45 and 46. Notice
in figure 45, that the mutual coupling causes the two signals to appear as one. In this
case while both the ideal and corrected signals yield very similar spectra, they both suffer
from peak splitting. Figure 46 shows the spectra at the upper frequency. Notice in this
case that the corrected signal yields peaks in the spectrum that are closer to the actual
angles of arrival than the ideal case. The actual signal with mutual coupling again yields
a spectrum with multiple angles or arrival that are well separated from each other.

The spectra for the circular sleeve dipole array are shown in figures 47 and 48.
In figure 47 the mutual coupling causes the two signals to appear as one while the ideal
and corrected signals suffer from peak splitting. In figure 48, the mutual coupling again
causes the signals to appear as one but in this case the angles of arrival appear far away
from each other as in figure 43. Both the ideal and corrected signals yield spectra with
the angles of arrival close to the true angles of arrival although both suffer from peak
splitting.

The results for the linear prediction algorithm are summarized in Table 3. The
mutual coupling consistently caused the spectra to yield angles of arrival much different
than the true angles of arrival. Sometimes the mutual coupling causes the two signals to
appear as one as in figures 47 and 48 while in other cases it caused the calculated angles

of arrival to be farther apart than the true signals. In almost all cases the spectra suffered
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from peak splitting which produced more angles of arrival than are actually present.
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Table 3: Linear Prediction Algorithm, SNR = 10 dB

Array Freq Angle Ideal Actual Corrected
(MHz) [ (deg) (deg) (deg) (deg)
Linear 200, 45.0, 49.2, 50.4 51.6, 52.5 50.1
Dipole 205 55.0 :
Linear 395, 45.0, 44.8, 55.8 | 46.0, 56.4, 56.7 | 44.6, 44.8, 45.0,
Dipole 400 55.0 55.4, 55.7
Linear 200, 45.0, 49.2, 504 48.4 50.5
Sleeve 205 55.0 -
Dipole
Linear 395, 45.0, 44.8, 55.8 46.3, 57.0 44.6, 44.8, 55.6
Sleeve 400 55.0
Dipole
Cross 200, 45.0, 49.6, 56.2 61.0 49,9, 66.6
Dipole 205 70.0 64.7
Cross 395, 45.0, 45.1, 45.5, | 38.8, 39.6, 82.9, | 43.6, 44.7, 45.1,
Dipole 400 70.0 46.2, 47.2, | 85.5 46.2, 46.9, 75.4,
73.7 78.1
Cross 200, 45.0, 49.6, 56.2, 83.8 48.6, 67.3
Sleeve 205 70.0 64.7
Dipole
Cross 395, 45.0, 45.1, 45.5, | 44.1, 47.0, 61.8, | 45.4, 46.5, 72.5,
Sleeve 400 70.0 46.2, 47.2, | 80.6, 87.3 74.5, 76.8, 78.8
Dipole 73.7
Circular 200, 45.0, 41.7, 44.2, 51.3 40.9, 43.5, 44.8,
Dipole 205 70.0 46.9, 62.1, 47.2, 62.3, 64.9
64.3, 66.6
Circular 395, 45.0, 42.8, 44.7, | 32.9, 34.6, 35.3, 45.0, 69.5
Dipole 400 70.0 46.0, 71.4 | 36.4, 83.7, 85.0,
85.8
Circular 200, 45.0, 41.7, 44.2, 53.1 40.4, 42.1, 45.4,
Sleeve 205 70.0 46.9, 62.1, 479, 61.7, 65.5
Dipole 64.3, 66.6
Circular 395, 45.0, 42.8, 44.7 83.1 42.3, 434, 44.1,
Sleeve 400 70.0 46.0, 71.4 45.0, 45.5, 46.6,
Dipole 69.8, 71.0
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2.6.4 MUSIC Algorithm

The MUItiple SIgnal Classification (MUSIC) algorithm has the best resolution
capability of the four algorithms. This spectrum is computed by first decomposing the
covariance matrix into its eigenvalues and eigenvectors. Provided the signal to noise ratio
is large enough, it is possible by examining the eigenvalues to determine which
eigenvectors correspond to the signal and noise and which to only the noise. The noise
only eigenvalues are then used to determine the noise subspace. The spectrum is then
computed by searching for the angles of arrival that are orthogonal to the noise subspace.

The resulting pseudospectrum is given by,

P(¢) = ——= (34)
Y Ipfad
I=K+1

where M is the number of eigenvectors, k is the number of sources, B, is the i noise
eigenvector, and a(¢) is defined in equation (28). This algorithm is described in detail
in Appendix E.

Figures 49 and 50 show the MUSIC spectra for the dipole array with one signal
at 45° and the other at 55°. These figures show that the resolution capability of the
algorithm improves as the frequency increases. Notice that in both figures virtually all
the mutual coupling is eliminated and the resolution of the algorithm is restored:to that
of the ideal case. The same conditions are used for Capon’s algorithm in figures 25

through 36. Comparing figures 25 and 49 it is clear that the MUSIC algorithm has better
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resolution capability than Cépon’s algorithm. Notice that even with the mutual coupling
present, the MUSIC algorithm is able to resolve the two signals while Capon’s algorithm
fails to separate the signals for the ideal case. At the upper frequency limit, both Capon’s
algorithm and the MUSIC algorithm can resolve the two signals as shown in figures 26
and 50. The angular estimates are approximately the same but the MUSIC algorithm
yields a sharper spectrum. B

Figures 51 and 52 show the results for the sleeve dipole array. In figure 51 the
mutual coupling prevents the resolution of the two signals. In this case it is the mutual
coupling between the dipoles and sleeves that prevent the separation of the two signals.
This is clearly the case since in the absence of the sleeves the two signals could be
resolved as shown in figure 49. As shown in figures 51 and 52, the mutual coupling
effects are eliminated with the corrected signal. Comparing figures 51 and 52 with
figures 27 and 28 it is again clear that the MUSIC algorithm performs better than Capon’s
algorithm. Notice that at the lower frequency limit, Capon’s algorithm can not resolve
the two signals even in the ideal case while the MUSIC algorithm can resolve them with
the corrected signal.

The spectra for the cross dipole array are shown in figures 53 and 54 for plane
waves at 45° and 70°. At the low end of the bandwidth in figure 53, the mutual coupling
clearly prevents the signals from being resolved. This coupling is accounted for and
removed by the corrected signal as shown by the spectrum. At the upper frequency limit,
the resolution capability of the algorithm is improved as shown in figure 54.

Figures 55 and 56 show the spectra for the cross sleeve dipole array. As with the
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cross dipole array in figure 53, the signals are not resolvable when mutual coupling is
present. Figure 56 at the upper frequency limit is very similar to figure 32.

The spectra for the circular dipole array are shown in figures 57 and 58 for
incident plane waves at 45° and 70°. Notice that at the low end of the frequency band,
the mutual coupling makes the signals unresolvable. Once the effects of mutual coupling
are removed, the signals can be resolved as shown by the corrected spectrum. At the
upper frequency limit, the mutual coupling does not prevent the resolution of the two
signals as shown in figure 58. Notice, however, that the mutual coupling does cause the
signals to appear more than 4° away from the true angles of arrival. When the mutual
coupling is taken into account, the spectrum is as good as the ideal case. Comparing
figures 57 and 58 with 33 and 34, it is clear that the MUSIC al.gorithm performs better
than Capon’s algorithm. Notice from figures 57 and 33 that once the mutual coupling
effects are mitigated, the MUSIC algorithm can resolve the two signals while Capon’s
algorithm fails to resolve them.

The spectra for the circular sleeve dipole array are shown in figures 59 and 60.
At the lower frequency limit in figure 59, the mutual coupling prevents the resolution of
the two signals. The effects of the mutual coupling are removed by the terminal
impedance matrix as shown by the spectrum for the corrected signal. Figure 60 shows
the spectra at the upper end of the operational bandwidth of the array. Notice that the
mutual coupling effects prevent the resolution of the two signals. Comparing this figure
with figure 58 shows that the added mutual coupling due to the sleeves prevents the

MUSIC algorithm from resolving the two signals.
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The results for the MUSIC algorithm are summarized in Table 4. This algorithm,
as stated before has the best resolution capability of the four techniques. In many cases,
the mutual coupling caused the two signals to appear as one. In every case presented, the
two signals could be resolved with the corrected signal. The angles of arrival for the

corrected signal are also seen to be approximately the same as in the ideal case.




Table 4: MUSIC Algorithm, SNR = 10 dB
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Dipole

Array Freq Angle Ideal Actual Corrected
(MHz) | (deg) (deg) (deg) (deg)

Linear 200, 45.0, 45.6, 53.4 44.6, 52.4 45.6, 53.5
Dipole 205 55.0
Linear 395, 45.0, 45.0, 55.5 45.8, 56.2 45.0, 55.5
Dipole 400 55.0
Linear 200, 45.0, 45.6, 53.4 50.2 45.6, 53.5
Sleeve 205 55.0 -
Dipole
Linear 395, 45.0, 45.0, 55.5 46.3, 56.1 45.0, 55.5
Sleeve 400 55.0
Dipole
Cross 200, 45.0, 45.7, 66.6 49.7 45.1, 66.9
Dipole 205 70.0

~ Cross 395, 45.0, 45.0, 70.5 42.7, 70.1 45.0, 70.4
Dipole 400 70.0
Cross 200, 45.0, 45.7, 66.6 47.2 45.0, 67.0
Sleeve 205 70.0
Dipole
Cross 395, 45.0, 45.0, 70.5 42.9 44.9, 70.3
Sleeve 400 - 70.0
Dipole

Circular 200, 45.0, 45.7, 65.3 51.1 44.8, 65.6
Dipole 205 70.0

Circular 395, 45.0, 44.9, 70.5 40.9, 74.3 45.0, 70.6
Dipole 400 70.0

Circular 200, 45.0, 45.7, 65.3 52.8 44.6, 66.0
Sleeve 205 70.0
Dipole

Circular 395, 45.0, 44.9, 70.5 67.9 45.8, 70,2
Sleeve 400 70.0
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2.6.5 Spiral Array

Unlike the dipole and the sleeve dipole antenna, the spiral antenna has significant
size. It has a radius of about 0.24 wavelengths at the lowest frequency of operation. As
a result, the minimum possible spacing is 0.48 wavelengths at the lowest frequency of
operation which at the highest frequency of operation equals 0.96 wavelengths. While
the larger spacing makes the antenna array less susceptible to mutual coupling effects,
ambiguities in the angle determination become unavoidable due to the formation of
grating lobes. Figure 61 shows the simulation results for a nine element spiral array

where the frequency is 300 MHz and the angles of arrival are 45° and 55°. The spectrum
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shows two peaks due to the actual signals and two peaks from the grating lobes. The
large physical size of the spiral element make it impractical for use in wideband direction
finding arrays.

2.7 Summary and Conclusions

Direction finding systems are used to resolve narrow band signals that can occur
over a large bandwidth. This requirement yields antenna arrays with strong mutual
coupling effects especially at the lower end of the operating bandwidth. As shown, this
mutual coupling degrades the ability of the direction finding algorithm to resolve two
signals with a small angular separation.

The results of mutual coupling compensation for the Beamformer algorithm are
shown in figures 13 through 24. This algorithm is simple to apply and robust with
respect to noise and mutual coupling. Unfortunately, its resolution capability is the worst
of the foqr algorithms. It is seen in figures 13 through 24 that the mutual coupling had
very little effect on the ability of the algorithm to locate the peaks in the spectrum. In
all cases the spectrum from the corrected signal is almost identical to that of the ideal
signal. In general, because the Beamformer algorithm is robust with respect mutual
coupling, the compensation for mutual coupling is not worth the effort.

The spectra for the ideal and corrected signals for Capon’s algorithm are also
almost identical. In this case, however, the compensation for mutual coupling is very
beneficial. In particular, figures 32 and 36 show that without mutual coupling
compensation, the two signals could not be resolved but with compensation the calculated

angles of arrival are approximately as good as the ideal case.
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The spectra for the linear prediction algorithm also show that mutual coupling
hinders the ability of the algorithm to resolve two signals. This is clearly shown in
figures 41, 43, 47, and 48. In all of these cases the resolution capability of the algorithm
is restored by compensating for the mutual coupling. The spectra from the linear
prediction algorithm manifest a phenomenon known as peak splitting which prevents a
clear picture of the two signals [49]. _

The spectra for the MUSIC algorithm are shown in figures 49 through 60. This
algorithm yields the best resolution of the four algorithms but requires estimating the
number of sources. As with the other algorithms, sometimes the mutuql coupling caused
the two signals to appear as one and sometimes it caused the calculated angles of arrival
to be farther apart. However, the compensation technique successfully restored the
performance of the MUSIC algorithm.

The MUSIC spectrum is also calculated for the spiral antenna array. It is shown
in figure 61 that the large spacing of the spirals caused grating lobes in the antenna
pattern which manifested themselves as ambiguous angles of arrival in the spatial
spectrum. Therefore, although the spiral is a broadband element, it can not be used in a

broadband array for direction finding.




CHAPTER III
DIRECTION FINDING IN THE PRESENCE OF
A NEAR FIELD SCATTERER

The previous chapter demonstrates that the resolution capability of the MUSIC
algorithm is adversely affected by the presence of mutual coupling. It also shows that
the mutual coupling effects can be compensated for by pre-processing the actual signal
with the terminal impedance matrix. The result is that the corrected spectrum is
approximately the same as the ideal spectrum which assumes that no mutual coupling is
present.

In this chapter, the effects of an object in the near field of an antenna array on the
MUSIC 'algorithm are investigated. As shown in figure 62, the scatterer produces
spherical waves which hinder the ability of the MUSIC algorithm to resolve two incident
plane waves with a small angular separation. This near field object may be a building,
an airplane wing, or the inside of the antenna array’s radome as shown in figure 63. Also
presented is a technique which overcomes the adverse effects on the MUSIC algorithm
of the near field scatterer.

Section 3.1 demonstrates the adverse effects of the interference from a near field
scatterer. In this section a typical array with far field signals and near field interfering

signals is investigated. It is shown that even when the interfering signals are relatively
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weak compared to the desired signals, the resolution capability of the MUSIC algorithm
is greatly reduced.

In section 3.2 the linear dipole array and near field scatterer are modeled
quantitatively. This is accomplished by using a hybrid technique that combines the
method of moments with the Uniform Theory of Diffraction (UTD) [34,35]. This
technique produces a second impedance matrix which is added to the original moment
method impedance matrix. It also yields a second excitation vector which is added to the
original excitation vector. The new system of equations is obtained by combining these
techniques to yield the current on the antenna due to both the incident fields and the near
field scatterer.

Section 3.3 presents a new procedure to compensate for the near field scatterer.
This technique consists of modifying the array configuration and terminal impedance
matrix. The modified array configuration is used to suppress the fields incident on the
array from the scatterer. This modification changes the search vector used in the MUSIC
algorithm. The terminal impedance matrix is modified to account for the additional
coupling through the scatterer. These two modifications permit an almost perfect
cancellation of the fields from the nearby scatterer.

The results of the simulations for synthetic interfering signals, a point scatterer,
and a distributed scatterer are presented in section 3.4. The simulations are first
performed on an ideal antenna array with incident plane waves and synthetic interference
sources modeled as point sources. This case shows that the new antenna array

configuration can adequately suppress the interfering spherical waves. In section 3.4.2
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a point scatterer with a specified RCS is used to determine the effectiveness of the new
terminal impedance matrix with the new antenna array configuration. It is found that the
scatterer can be successfully suppressed. In the final case a finite length edge is used as
the scatterer. The simulations show that the interference can be adequately suppressed
with the new terminal impedance matrix and antenna configuration if all the scattered
energy can be considered as having a common phase center. The results in section 3.4
show that the modified terminal impedance matrix and the new array configuration with
the new search vector can successfully suppress the effects of a near field scatterer.

3.1 Effects of a Near Field Scatterer

Figure 64 presents a typical scene where spherical waves adversely effect the
resolution capability of the MUSIC algorithm. In this case, the nine element linear array
of chapter 2 is used to resolve incident plane waves. Two plane waves at 300 MHz and
305 MHz are incident at 45° and 55° relative to the array axis. Two spherical waves,
representing interference from a nearby scatterer are also incident upon the array as
shown in figure 64. Figure 64 shows the typical interference from a near field scatterer
that can degrade the resolution capability of the MUSIC algorithm.

Figure 65 shows the spectrum for the problem in figure 64 for several different
signal to interference (S/I) ratios. The plane waves are the desired signals and the
spherical waves are the interfering signals. As in chapter 2, the spectrum is a normalized
average of 20 simulations. The ideal spectrum which shows the result of the MUSIC
algorithm when no spherical waves are present is also included in figure 65. Notice that

as the S/1 ratio decreases, the two peaks begin to merge. Notice also that when the S/I
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ratio is 15 dB, the two peaks can no longer be separated. Figure 65 shows that even
when the power in the plane waves is much greater than that in the spherical waves, the
resolution of the MUSIC algorithm is significantly affected.
3.2 Electromagnetic Model of the Array and Scatterer

As in chapter 2, the reaction integral equation is used to determine the current
induced on an antenna array illuminated by a plane wave. This equation is reduced to
a system of linear equations with the method of moments described in Appendix A. The
scatterer is incorporated into the model by using a hybrid technique that combines the
Method of Moments with the Uniform Theory of Diffraction [34,35]. This creates a new
system of equations which are then solved to yield the current on the antenna array. The
terminal voltages are computed by multiplying the current at the antenna terminals by the
load impedance.

Using the method of moments as described in Appendix A, the integral equation

for the antenna array becomes the system of equations

N
S ZwI, = Vy m=1,2,...,N 35)
n=1
Zom = f J, Efds (36)

v, = -f* -Elds (37)
8
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where Z_, is the mutual coﬁpling between modes "m" and "n", I, and I, are the currents
at modes "n" and "m" respectively, V_ is the excitation at mode "m", E' is the incident
field and ds is the differential length along the dipole.

The presence of the scatterer can be accounted for in the MoM model of the
antenna array by modifying each of the integrals [34, 35 pp. 500-510]. In particular,

equations (36) and (37) become .

Zon = [Tpr(Ef+aEf) ds (38)
g
v, = -fJ',,-(E"“ bE') ds 39)

where Z'_, is the new impedance matrix, V’_ is the new excitation vector, (a E°) is the
field from the n™ mode scattered by the object and (b E') is the incident field scattered
by the object. The system of equations is now

N
Y Zpn In = Vi m=1,2,...,N (40)

n=1

where I', is the new n™ mode of current on the antenna. Equations (38) and (39) can be

<

expanded to yield

Zan = fJ'm-E"n’ds + fjm'aﬁn‘ds (41)
8 8
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m

v, = f* -Bldg + fjm-bﬁ:’ids (42)
8 -4

The new impedance matrix and excitation vector can now be represented as

Zmn = Z, + Z2, (43)

and v, = v, + V7 (44)

where ngn = f,j’man_’.:ds (45)
g

and  y9 = f J,-bElds - . (46)
. g

Note that the terms "a" and "b" in equations (44) and (45) can not be pulled out of the
integrals since they are, in general, dependent upon modes "m" and "n."
Substituting equations (43) and (44) into equation (40) yields

N
S (2 + 23 I, = (V,+ V) m=1,2,...,N (47)

n=1

Note that Z_, and V_ have already been calculated from the method of moments model

of the antenna array. The terms Z8_ and V®_ are calculated using equations (45) and
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(46). The equations for calculating these terms for an edge type of scatterer in the near
field of the antenna array are derived in Appendix F.
3.3 Compensation for the Near Field Scatterer

The presence of an object in the vicinity of the antenna array affects both the
method of moments impedance matrix and the excitation vector as shown in equation
(47). To eliminate the degradation effects of the near field scatterer, both of these factors
must be corrected. The added mutual coupling due to Z8 , is compensated for by a
terminal impedance matrix similar to equation (22). The vector V& must also be
suppressed to restore the resolution capability of the MUSIC algorithm. This is
accomplished by combining the output voltages of the antenna elements to null the
contributions from the interfering scatterer. Mathematically, the objective is to reduce

equation (47) to

1,2,...,M (48)

E Zig I, = k

where Z™,, is the modified terminal impedance matrix that accounts for the presence of
the scatterer, I, is the I* terminal current on the antenna, and V, is the voltage at the k™
antenna terminals. Note that the current at the antenna terminals is already known since
the current at all points on the antenna array was found from equation (47). Therefore,
it only remains to calculate the matrix Z™, and suppress the vector V& . *

3.3.1 Terminal Impedance Matrix Including the Scatterer

The derivation of the terminal impedance matrix that includes the effect of the
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scatterer is very similar to the derivation of the terminal impedance matrix without the
scatterer. This new matrix consists of two terms. The first term accounts for the direct
mutual coupling between the antenna elements. The second term models the mutual
coupling between antenna elements through the scatterer. The new terminal impedance
matrix is the sum of these two terms.

As in chapter 2, let there be M antenna elements in the array with the current on
each element represented by N, modes. The size of the moment method impedance
matrix, Z_, is N x N where N = M x N_. This matrix will be reduced to a M x M

matrix whose elements represent the mutual coupling between the antenna terminals.

As before, the overall mutual impedance between terminals k and 1 is defined as

VTG
A les = );.'13 (49)
I;

where V,," is the open circuit voltage at the k™ antenna terminal due to the current on the
I* antenna. The open circuit voltage which is also the same as in section 2.3.1, is given

by the expression

. 1 L=
vie = - f B, T*d1 (50)

Te
I kt2antenna

£

where E,;, as shown in figure 66, is the electric field at the k™ antenna element due to the

I* antenna. The presence of the scatterer changes E,; to
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kN,
Ekl B E [ﬁﬂf * -'mw Dngp Angp e_jpg“]G(Z‘zm) 1)
m=1+{k-1) N,
where
E,.' = the electric field at the m™ mode from the 1" element
E.” = the electric field at the m" mode scattered by the wedge
D, = the diffraction coefficient from p to q to m

A, = the spreading factor from p to q to m
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S = the distance from the g™ segment to the m™ mode

mq

and  G(z-z )= the gate function. The electric field E_' which is the sum of the electric

field from all the p® modes on the I™ antenna element is

1N,
= Ep (52)

p=1+(1-1) N,

i
|

The electric field due to the wedge, E_*, is the sum of the electric field due to each of

the segments comprising the wedge

Ny

-‘mw = E EM (53)

=1

where N, is the number of wedge segments. The electric field, E,,, is the sum of all the
fields from the p modes on the I antenna element diffracted by the g™ segment toward

the m'™ mode on the k™ element.

IN,

B,y = 2: Epep (54)
p=1+(1-1)} N,

Substituting equation (54) into (53) yields

N, 1N,
Ey=% Epop (55)
@=1 p=1+(1-1) N,
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Substituting equations (52), and (55) into (51) yields

kN, 1IN, N,
Ey = x Epp * 3 Engp Dugp Angp e PG (2-2,) (56)
m=1+(k-1) Ny p=1+(1-1) N, g=1
Let
E (@ =E_D A g P (57)

mp mgp “Tmgp “"mqp

The electric field E,; now becomes

kN, 1N,

Eg = G(z-2z,) (58)

Nl
3 Bt @)
m=1+(k-1) N, p=1+(1-1) N, =1

Substituting (58) into (50) yields

G(z-z,) |-I*dl

1 kN, 1N, N,

T - -

Vi = - f E 2 Ep*S B ()
Iy m=1+(k-1) N, p=1+(1-1) N, g=1

k®antenna

(59)
The discrete summations can be taken outside the integral. This yields
1 kN, 1N, N,
Vil =-—% ; X [ B *+ Y Bapl@ [6z-2,) [T HdI
i m=1+(k=1) Ny p=1+(1-1) N peny2 e on =1
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(60)

Since the gate function is non-zero only over the m™ mode, the terminal voltage becomes

1N,

1 kN, N, N,

T —> - -~

ViE = -— ?: ?: [ Bty Bl |-I%d1  (6D)
Ik m=1+(k-1) N, p=1+(1-1) N-m“mod =1

Expanding this equation yields

kN, 1N, N,
vEe-— % > [ EpIndl+y, [ E,(q-I7d1] (62)
Iy m=1+(k-1) N, p=1+(1-1) N, nBmode @1 e e
The voltage between the m™ and p* modes is
_ 1 — . -
Vip = "5 B, I,dl (63)
M mthpode

Similarly, the voltage between the m™" and p"™ modes due to the electric field scattered by

the q"* segment of the wedge is

Vaap =~ [ Ewpla@) -I7dl (64)

B pthmode

For both voltages in equations (63) and (64), the mutual coupling between the m™ and p™

modes is
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V.
Zpp = 2P

Ip
Z = E'EE
ngp Ip

-

(65)

(66)

Substituting equations (63) and (64) into equations (65) and (66) respectively yields

Zop = == [ EprIndl
I"Ipm“'mode

Zagp = 5 [ Ewl@) I7dl

8P nthmode

Rearranging equations (67) and (68) produces

[ EpI®dl = -z,1,1,
mmode

En(q)I1%dl = -2, T, T,

m™~mode

Next, equations (69) and (70) are substituted into equation (62) to yield

(67)

(68)

(69)

(70)
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1 kN, 1N, N,
Vil = - Te E E “ZapTalp * 2. ~ZnapTalp 1)
Iy m=1+(k-1) N, p=1+(I-1) N, g=1

Since the mutual coupling between the k™ and 1" elements is

vre .
z%e = Ikrl, : (72)

The terminal impedance matrix with the edge present is

1 kN, IN,

ZT; =
K Te ,Te
Ik Il me=1+(k~1)N, p=1+(I-1)N,,

NI
z,, + ?;:Z"‘"’ 11, (73)

Note that if no scatterer is present, N, is zero and the terminal impedance matrix reduces
to equation (22).
3.3.2 New Array Configuration

The array is configured to suppress the interference from the scatterer. This is
done by combining the original elements in pairs to obtain effectively new elements as
shown in figure 67. Each of the pairs of elements has a degree of freedom in the form
of a weight that can be chosen appropriately. This weight is chosen to greatly red:lce the

signal from the interference appearing at the outputs of the new elements. Note also that

the elements are reused in the sense that each new element shares at least one of the
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Figure 68: Array of Elements with Nulls in the Direction of the Near
Field Scatterer

original elements with another one of the new elements. For example, the output of the
original element number 2 is part of the outputs of both the new elements 1 and 2. This
causes the noise signals at the outputs of the new elements to be correlated. The noise
sources are decorrelated by applying the Mahalanobis transformation which leads to a

modification of the search vector in equation (28). This array configuration is used to

suppress the interference from a near field scatterer.
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3.3.2.1 Suppression of the Interference from the Near Field Scatterer

Figure 68 shows the antenna elements and the near field scatterer. As indicated
in the figure, each of the new composite antenna elements does not receive a signal from
the scatterer. To achieve this interference nulling the original isotropic elements are
combined in pairs as shown in figure 67. Each pair of elements is combined with a
complex weight to form a new antenna element. To determine the weights, consider the
first two isotropic elements and the first weight. The interference signal at the output of

the new element is the sum of two spherical waves. Setting this output to zero yields

e ~JBry e Jbry
A + w A, =0 (74)
r, .

where A, = the amplitude of the spherical wave incident upon element 1

A2 = the amplitude of the spherical wave incident upon element 2

I, = the distance from the scatterer to element 1

I, = the distance from the scatterer to element 2

B = the phase propagation constant.

Solving equation (74) for w, yields

A PR LIC Y (75)

w, =
A,r,

Assuming that the amplitudes A, and A, are the same and produces
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P LICR (76)
1

w, =

For the wedge scatterer the amplitudes A, and A, are a function of the diffraction
coefficient. This coefficient is in turn a function of the observation angle of the scatterer.
Since the observation angle changes from’element to element, the amplitudes also change
from element to element. However, since the distance between adjacent elements is
usually small compared to the distance between the elements and the scatterer, the change
in the observation angle is small. Therefore the change in the diffraction coefficient and
the amplitude of the spherical wave is small. The result is that the ratio of the amplitudes
can be considered unity.
In general, the weight for the i element pair is

T B a7

w, =
i
r‘

where T, is the distance from the scatterer to the i antenna element. These weights are
computed by knowing only the location of the scatterér.
3.3.2.2 Signal Model

The next step is to determine the effect of the new array configuration on the
MUSIC algorithm. To do this, consider the incoming signals without the interference.

The signal at the new composite i® antenna element due to only the incident plane waves




K
5D = S u e P w e PA L n ) cwim, @)

k=1
where u(t) = the k™ narrow band plane wave
B = the phase propagation cc;nstant
d, = the distance from the origin to the i antenna element
o, = the incident angle of the k™ signal
n(t) = the noise at the i antenna element
w, = the i complex weight
and K = the number of sources present.

For two signals equation (78) becomes

e +jBd cos($)) +w, e*]ﬁdfn(m) e +jBd,cos(d;) +w, e*]ﬂdgoos(%)
u,(®
x(?) = )
+ + 2
o U)o PAb) TPl |, g IBRE)
+n, 0 + n)
where

n @ = [n® n) - ng®1"

nb(t) = [W1 nz(t) w2”3(t) Wsng(t)]r

(78)

(79)

(80)

(81)
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In matrix notation equation (79) becomes

¥ = AR + 7, + 7, (82)

where

e +jBd,cos(d;) +we +jBdycos(d,) e +jBd,coe(dy) rwye +jBd,cos(d,)
A= : s (83)
e +jBdycos(dh,) +wge +iﬁw¢|) e +jBdgcos(d,) tw,e +/Pdgeoa(dy)
The covariance matrix is given by
R, = Elxz®) = El(AZ+n, +iib)(Al7+ii¢+ﬁb)”] (84)

where E[-] denotes mathematical expectation. Since the noise sources are zero mean,

independent and uncorrelated with the incident signals and each other, equation (84)

reduces to

R, = ARAY + Elf A1 + EIA, A1 + ER,R,] + EIA, ] (85)
where

R, = Elwa™ (86)

Using equation (80) and (81), the expectations in equation (85) become
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2 0
- H 0 o2 . 0
Ein 1= (87)
0 0 a?
lw,|*e> 0 0 |
0 w,[20? - 0
Eli, 7,1 = sl _ (88)
0 0 - |wgf*0®
(0 0 0 -~ O
woer 0 0 ~ 0
Fii1=|0 wda?0 - 0 (89)
0
0 0 0 wa®0
0 we* 0 - 0]
6 0 we®.- 0
Ef@il1=lo0 0 0 ~ 0 (90)
w802
o 0 0 0 O]

Note that E{ﬁaﬁbﬂ] is the Hermitian of E[ﬁbﬁa"] . Substituting equations (87), (88),

(89), and (90) into equation (85) yields

R, = AR A" + o*Z, 1)

where
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.1+!w1|2 W, 0 0
w1+ w? w, 0
o=l 0w 1+fwP - 0 92)
Wy
0 0 0w L+lyl

Equation (91) can be cast in a form suitable form the MUSIC algorithm by first applying

the Mahalanobis transformation which is,

y=3"z. (93)

Applying this transformation to equation (84) yields

R, =2, PARA*E + oY (94)

where I is the identity matrix. Setting

B =314 (95)

]

yields

R = BRB" + o’I - (96)

=

Comparing this to equation (185) in Appendix E, shows that the MUSIC algorithm can

now be applied in the usual manner but with the search vector being
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e +jBdycos($) +jpdycos($)

+ we
a(@) = 2,” : 7
A I

This will suppress the interference that arrives at the antenna elements due to the scatterer
without significantly affecting the resolution of the MUSIC algorithm.
3.4 Results /

The MUSIC algorithm with the array configuration in figure 67 and the search
vector in equation (97) is investigated for three different cases. In the first case no
mutual coupling is present between the array elements or the elements and the source of
the interfering signals. Therefore, equation (73) is not needed and the ability of the array
configuration in figure 67 with the search vector in equation (97) to suppress interfering
signals can be investigated. In the second case, a point scatterer is used to generate the
interfering signals. In this case there exists mutual coupling between the array elements
and the scatterer. Therefore it is necessary to use equation (73) along with the new array
configuration and search vector in equation (97) to suppress the interfering signals. In
the third scenario, the point scatterer is replaced by a distributed scatterer. The
interference no longer emanates from a single point. In this case equations (73) and (97)
are used to suppress the interference where it is assumed that all the interference can be
considered as arriving from a single point. This is a valid assumption in some cases but
not in all cases. These cases show the usefulness of the new array configuratio;x along

with the new search vector in suppressing the scattering from a near field object.

In this chapter all the simulations are performed on the nine element linear dipole
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array of chapter 2. This aﬁay is designed to resolve angles of arrival over one octave
from 200 MHz to 400 MHz. The incident signals are plane waves at frequencies in the
center of the operating band at 300 MHz and 305 MHz. The spectra shown are the
normalized average of 20 simulations computed every 0.1°. In all simulations, the SNR
is fixed at 10 dB. The simulated data is composed of 300 snapshots as in chapter 2.
3.4.1 Suppression of the Interference _

The antenna element configuration with the search vector as given in equation (97)
is used to resolve plane waves when interference from a near field scatterer is present.
The spherical waves emanate from point sources located at the given position and with
the same frequency as the incident plane waves. Point sources are used since, unlike a
scatterer, they are uncoupled to the antenna array. Therefore, the usefulness of the
element configuration in figure 67 can be investigated without being concerned about the
effects of mutual coupling.

The simulations are performed with two plane waves and two point sources. The

point sources are located as shown in figure 64. Mathematically, the incident signals are

I
L BTy -jank—
s, = Ale Hn~1) P dcos(d)) + Aze e IA (98)
r
n
4 )
L JBary | J2mk=
s, = |Ae Hn-1)Bydcosidy) Aze— e 5 (99)

Ts
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where A, is the amplitude of the plane waves, n is the antenna element index, d is the
separation between elements, ¢, and ¢, are the angles of arrival of the incident plane
waves with respect to the axis of the array, A, is the amplitude of the spherical waves,
r, is the distance from the n™ antenna element to the point sources, k is the snapshot
number, and f, is the sampling frequency.

The simulations are performed for various signal to interference (S/I) ratios. The
desired signals are the plane waves and the interfering signals are the spherjcal waves.
In the first case, the plane wave and spherical wave amplitudes are chosen such that the
S/ ratio is 5 dB. In the second and third cases, the S/I ratio is 0 dB and -5 dB
respectively. The third case does not represent a realistic near field scatterer since the
spherical waves are stronger than the plane waves. These simulations show the usefulness
of the antenna element configuration in figure 67 of suppressing spherical waves.

F'igure 69 shows the effect of the spherical waves when the S/I ratio is +5 dB.
The spectrum labeled "Plane Waves Only" shows the ideal spectrum without the
interference. This spectrum is calculated with the search vector in equation (28) and
represents the best possible spectrum under the given conditions. The spectrum labeled
"Plane and Spherical Waves" shows the MUSIC spectrum with the search vector in
equation (28) and the incident signals in equations (98), and (99). Notice that the
presence of the spherical waves prevents the resolution of the desired signals. The
spectrum labeled "Compensated”" shows the output of the MUSIC algorithm with the
search vector calculated using equations (77), (92), and (97). Notice that the spectrum

is almost identical to the ideal case. Figure 69 shows that when the S/I ratio is 5 dB, the
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Figure 69: Compensation for Point Sources, S/I = 5 dB

resolution of the MUSIC algorithm can be restored with the modified search vector.
Figure 70 shows the effect of the interference when the S/I ratio is 0 dB. In this
case, the interfering spherical waves are as strong as the incident plane waves. In figure

70, the ideal spectrum is repeated for reference. The "Plane and Spherical Waves"

spectrum show that again the MUSIC algorithm can not resolve the two plane waves with
the search vector in equation (28). This is to be expected since figure 69 shows that even
with weaker spherical waves, the plane waves can not be resolved. The compensated
spectrum shows that with the search vector in equation (97), it is possible to restore,
almost completely, the resolution capability of the algorithm. Figure 70 shows that even

when the interference is as strong as the desired signal, it can be completely suppressed

with the array configuration in figure 67.
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Figure 71 shows th(; effect of the spherical waves when the S/I ratio is -5 dB. In
this case, the interfering spherical waves are stronger than the incident plane waves.
Again, in figure 71, the ideal spectrum is included as a reference of the best possible
result. The "Plane and Spherical Waves" spectrum shows the MUSIC algorithm can not
resolve the plane waves using the search vector in equation (28). The compensated
spectrum shows the spherical waves can be suppressed with the search vector in equation
(97). Again, the interference is almost completely suppressed by the array configuration
in figure 67. Figure 71 shows that even when the spherical waves are stronger than the
plane waves, they can be suppressed to the extent that the MUSIC algorithm can resolve
the two plane waves.

Figures 69, 70, and 71 show the results of using the antenna element configuration
in figure 67 to suppress the interference from a near field scatterer. In all three cases the
interferepce adversely affects the resolution capability of the MUSIC algorithm. The
resolution of the MUSIC algorithm, however, is restored by using the new antenna
element configuration and the new search vector. The resolution of the algorithm is
restored even when the interference is stronger than the incident signals.

3.4.2 Point Scatterer

The antenna element configuration and the terminal impedance matrix are used in
this section to suppress the effect of a near filed point scatterer. The scatterer is
represented as a point so that all the energy scattered by the object can be considered to
be arriving from a single point. Unlike the point sources in the previous chapter,

however, the point scatterer is coupled to the antenna array. Therefore, it is necessary to
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use the terminal impedance matrix along with the new antenna array configuration in
figure 67 to compensate for the effects of the near field scatterer. Since the scatterer is
small enough to be considered a point, the terminal impedance matrix in equation (73)
is calculated with N, = 1. In this section, the new array configuration, search vector and
terminal impedance matrix are used to suppress the interference from a point scatterer.

The simulations in this section are_performed on the linear array in figure 64. In
this figure, the source of the spherical waves is replaced with a point scatterer. The
scatterer produces spherical waves at the same frequency as the incident plane waves.
This interference hinders the ability of the MUSIC algorithm to resolve the two plane
waves. Note that the point scatterer produces signals very similar to the point sources in
the previous section in the sense that they appear to be coming from the same point and
have the same frequency as the incident plane waves. The linear array in figure 64 is
used to determine the effects of a point scatterer on the resolution capability of the
MUSIC algorithm.

The nine element linear dipole array is designed as described in chapter 2. This
array can resolve plane waves over a one octave bandwidth from 200 to 400 MHz. The
incident signals are uniform plane waves at 300 and 305 MHz with angles of arrival at
45° and 60°. The usual angle of arrival of 55° is replaced with 60° so that in the absence
of a scatterer, the MUSIC algorithm can resolve the signals with mutual coupling present.
These parameters are used for the nine element dipole array to determine the ability of
the array configuration in figure 67 and the terminal impedance matrix in suppressing the

effects of a point scatterer.
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The Radar Cross Section (RCS) of the point scatterer is varied to determine the
ability of the new array configuration to suppress a near field scatterer. The RCS is

defined by the equation [50]
. 3
g = Lm 41tr2l£[z (100)
r-o L

where o is the RCS, E' is the electric field incident upon the scatterer, and E® is the
electric field scattered by the object. The RCS is typically expressed in decibels and is
a measure of how much energy is scattered by the object. The RCS of the point scatterer
is varied from -5 to 5 dBsm to determine the ability of the terminal impedance matrix and
the new array configuration in suppressing the interference from a point scatterer.

Figure 72 shows the MUSIC spectrum for the nine element linear dipole array of
chapter 2 and a near field scatterer with an RCS of -5 dBsm. The ideal curve shows the
spectrum without mutual coupling and without the scatterer present. This is the best
possible spectrum achievable with the MUSIC algorithm under the given conditions. The
solid curve in figure 72 is calculated with equation (35) and shows the effects of only
mutual coupling without the scatterer present. The third spectrum is calculated with
equation (47) and shows the effects of the near field scatterer. Notice that the scatterer
almost prevents the signals from being resolved. Figure 72 shows the effects, of an
uncompensated near field point scatterer with a RCS of -5 dBsm.

Figure 73 shows the results of compensating for the near field scatterer. The ideal




109

curve is the same as that in figure 72 and is included as a reference. The solid curve
shows the result of compensating for the mutual coupling including the scatterer but not
compensating for the interference from the scatterer with the new array configuration and

search vector. This corresponds to the equation

M
S ZFH =V, + VE k=12,..M (101)
I=1 -

where Z™,, is given in equation (73). Notice that the solid curve yields a good estimate
of the actual spectrum. This is because the signal from the scatterer is very small with
a RCS of -5 dBsm. The dashed curve corresponds to correcting for V&, but not mutual
coupling. In this case, the spherical waves from the scatterer are suppressed with the
array configuration in figure 67 but no compensation is made for the mutual coupling
effects. In this case the effect on the spectrum is more significant since the mutual
coupling between the antenna elements is stronger than the signal from the scatterer. The
final spectrum in figure 73 corresponds to correcting for both mutual coupling and the
spherical waves from the scatterer using figure 67 and equations (73) and (97). This case
corresponds to equation (48). Notice that the new spectrum is very close to the ideal
spectrum. Figure 73 shows that compensating for only the mutual coupling produces a
reasonably good estimate of the spectrum but compensating for both the mutual coupling
and the interfering signals from the scatterer yields a spectrum almost as good as th; ideal

case.

Figure 74 shows the effect of a point scatterer with a RCS of 0 dBsm on the
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MUSIC spectrum. As in figure 72, the ideal curve shows the spectrum without mutual
coupling and without the scatterer present. The solid curve shows the effect of mutual
coupling without the scatterer present. The dashed curve shows the spectrum with mutual
coupling and the O dBsm point scatterer. This spectrum is very similar to the
corresponding spectrum in figure 72. Notice, however, that the signals are closer to being
unresolvable. Figure 74 shows the effect of a 0 dBsm point scatterer in the MUSIC
spectrum.

In figure 75 the point scatterer is compensated for as in figure 73. Notice that the
spectra in figure 75 are very similar to those in figure 73. In this case, the solid curve
which represents compensating for only mutual coupling has a minimum value greater
than that of the corresponding spectrum in figure 73. This occurs since the object scatters
more energy to the array since the RCS is larger. The final spectrum shows that
compensating for both the mutual coupling and the interference from the scatterer
produces a spectrum almost as good as the ideal case. This spectrum is practically the
same as the compensated spectrum in figure 73.

Figures 76 and 77 for a point scatterer of 5 dBsm correspond to figures 72 and
73. The effect of the scatterer in figure 76 almost prevents the two signals from being
resolved. This spectrum yields the worst estimate of the angles of arrival compared to
the corresponding spectra in figures 72 and 74. Figure 77 shows the result of
compensating for the effects of the scatterer. Notice that the spectrum from correcting
for only mutual coupling is worse than in figures 73 and 75. This is due to the fact that

the RCS of the scatterer is the largest of the three cases. Notice that even with the large
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RCS, the final spectrum yields an estimate of the angles of arrival almost as good as the
ideal case. Figures 76 and 77 show the result of a point scatterer of 5 dBsm.

The mutual coupling is shown to be significant in figures 72 through 77. The
mutual coupling between two objects is inversely proportional to the distance between
them. Since the antenna elements are separated by 0.375A the coupling between them is
significant. The coupling between the near field object and the antenna array is less
significant because the distance between them, in general, is greater. The coupling is also
less significant since the object does not scatterer all the energy from the array back
toward the array. The mutual coupling between the scatterer and the array is less
significant than the coupling between the elements themselves. Mathematically, this

means that

Nl
zmp > E; A for every m and p. (102)
p

In other words, equation (22) is approximately the same as equation (73). Note that in
this section the near field object is a point scatterer and therefore N, = 1.

The significance of compensating for the mutual coupling between the scatterer
and the array is investigated in figure 78. In this case a point scatterer with a RCS of 5
dBsm is placed 0.5\ from the array. The results for this case are shown in figpre 79.
The ideal spectrum shows the result when no mutual coupling or scatterer is present.

This is the best possible spectrum under the given conditions. The spectrum labeled

"actual" shows the expected result when mutual coupling and the scatterer are present.
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No compensation is performed for either the mutual coupling or the interference from the
scatterer. The spectrum labeled "corrected for antenna coupling” shows the result when
the new array configuration and search vector are used but the terminal impedance matrix

is calculated with equation (22). This assumes that

Nl

3z, ) | (103)

q=1

is negligible compared to Z,, for all m and p. This spectrum yields a very accurate
estimate of the angles of arrival even though a strong scatterer with a RCS of 5 dBsm is
near the array. The final spectrum labeled "corrected for all coupling" shows the result
of using the new array configuration and equation (73) instead of equation (22). Note
that the spectrum is not significantly improved. Figures 78 and 79 show that only a small
improvemént results when the coupling between the scatterer and the antenna array is
compensated.
3.4.3 Distributed Scatterer

Sections 3.4.1 and 3.4.2 show the results when all the interference arrives from
a single point. In section 3.4.1, point sources are used to generate the interference. In
this case, the array configuration in figure 67 along with the modified search vector in
equation (97) is used to suppress the interference and restore the resolution capability of
the MUSIC algorithm. In section 3.4.2, the point sources are replaced with a point

scatterer. In this case, the interference is very similar to the previous case but there is

now mutual coupling between the scatterer and the array. This coupling is accurately
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suppressed with equation ‘(73). | The previous two sections demonstrate that the
interference can be adequately suppressed when it arrives from a single point.

In this section, the scattered energy arrives from a fninte size object. However,
all the energy can be considered as having one phase center. As shown in figure 80, the
scatterer is a 90° wedge with a length of 10 meters. The mutual coupling between the
wedge and scatterer is suppressed using_equation (73). For the wedge scatterer, the
energy arriving at the array from the scatterer can be considered as emanating from the
endpoints of the wedge which are 10\ apart. However, since the length of the wedge lies
in the plane of the electric field vector, the energy the energy can be considered as
arriving from the midpoint of the wedge which lies in the xy plane. Therefore, the
weights for the array configuration in figure 67 are chosen assuming that the wedge is a
point scatterer at the location shown in figure 80.

The results for the uncompensated distributed scatterer are shown in figure 81.
The ideal spectrum assumes that no mutual coupling or scatterer is present. The solid
curve shows the spectrum with mutual coupling but without the scatterer. This is the
expected spectrum when no scatterer is present and no compensation is made for mutual
coupling. The final spectrum in figure 81 shows the expected spectrum when the
scatterer is present and no compensation is attempted. Notice that the spectrum is slightly
worse due to the presence of the scatterer. Figure 81 shows that adding the scatterer
causes a slight change in the actual spectrum which is much worse than the ideal

spectrum.

Figure 82 shows the result of compensating for the distributed scatterer. As usual,
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the ideal spectrum is included as a reference. The solid curve represents compensating
for mutual coupling with equation (73). In this case N, is much greater than one since
the scatterer has significant size. The spectrum labeled "corrected for V2" shows the
effect of correcting for the interference from the scatterer but not the mutual coupling
between the scatterer and the array or between the array elements themselves. Notice that
in this case only one signal is apparent in the spectrum. The final spectrum represents
compensating for all the mutual coupling and the interference from the scatterer. :Notice
that the spectrum is almost as good as the ideal case. Figure 82 shows that the resolution

capability of the MUSIC algorithm can be restored for a large scatterer if all the scattered
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energy can be considered as arriving from one point on the scatterer.
3.5 Summary and Conclusions

The effects of a near field scatterer on the MUSIC algorithm are investigated in
this chapter. This object may be a nearby building or the inside of an antenna array’s
radome. This object scatterers energy toward the array and degrades the ability of the
algorithm to resolve two signals with a small angular separation. It is shown that the
effect of a near field scatterer can be suppressed by the method presented here.

The presence of a near field scatterer is modeled with a hybrid technique that
combines the method of moments with the Uniform Theory of Diffraction. The method
of moments is used to model the array while diffraction theory is used to model the
scatterer. This hybrid technique produces a second moment method impedance matrix
and a second excitatation vector. These terms alter the original system of equations to
produce th¢ currents on the array due to both the incident signals and the scattererd fields.

The effect of a near field scatterer is compensated for by a new terminal
impedance matrix and a new array configuration. The new matrix models both the
mutual coupling directly between the antenna terminals and the coupling between the
elements due to the field from one elements scattered by the object to one of the
elements. The new antenna element configuration combines the elements in pairs with
a complex weight. The weight for each pair is chosen such that a null is placed at the
point of the scatterer. This produces correlated noise which is decorrelated using the
Mahalanobis transformation. The MUSIC algorithm is then applied with an altered 1

search vector to account for this transformation. The new terminal impedance matrix and
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array configuration successfully suppress the effects of a near field scatterer.

The suppression of near field interference is first investigated with uncoupled
nearby point sources. Since these sources are uncoupled, no mutual coupling exists
between them and the array. No mutual coupling is also assumed between the elements.
This allows an investigation of the ability of the new array configuration and search
vector in suppressing the effects of near field interference. It is shown that the
interference can be suppressed and the resolution of the algorithm can be restored even
when the interference is stronger than the original signal.

In the next case, the point sources are changed to a point scatterer. In this case
there is mutual coupling betweent the scatterer and the array along with interference from
the scatterer. The new terminal impedance matrix is used to compensate for the mutual
coupling and the new array configuration is used to suppress the interference. The results
show that even when the scatterer has a large RCS, its effects can be adeqﬁately
suppressed.

In the final case, the scatterer is changed to a finite length wedge. In this case,
the interference arrives from all parts of the wedge. However, the interference can be
suppressed using the new array configuration since all the energy can be considered as
having one phase center. The simulations show that the effects of a finite length near
field scatterer can be suppressed using the technique in this chapter if all the energy has

a common phase center. “




CHAPTER IV
MUTUAL COUPLING COMPENSATION
APPLIED TO MEASUREMENTS

Chapter 2 shows that the mutual ;oupling between antenna elements adversely
effects the ability of the direction finding algorithm to resolve two signals with a small
angular separation. The mutual coupling effects are effectively eliminated by using the
terminal impedance matrix which models the mutual coupling between the antenna
elements. The new spectrum is approximately the same as the ideal spectrum which
assumes no mutual coupling is present.

In this chapter the terminal impedance matrix is applied to actual measurements
rather thaﬁ a simulated signal. This is done with two sets of measurements. The first set
consists of time domain data taken with various monopole arrays. These measurements
are obtained from a colleague in Germany [52]. The second set of measurements consists
of steady state frequency domain data for a horn array. In this case the magnitude and
phase at the terminals of each horn is given for a particular frequency. These
measurements are obtained from WL/AARM-3 at Wright-Patterson Air Force Base. For
the horn measurements, the terminal impedance matrix is calculated in a different manner
since the technique in chapter 2 is derived for thin wire antennas.

Neither of the two sets of experimental data used here is obtained specifically to
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illustrate the problems of strong mutual coupling in an antenna array. For the monopole
array data the inter-element spacing is 0.34A or larger. For the horn array data, the
element spacing is half a wavelength. Therefore, the mutual coupling is not very strong.
Also, it would have been best to measure the mutual coupling matrix with the actual setup
and use this matrix for compensation purposes. Unfortunately, this data is not available.
The mutual coupling matrix is obtained from an electromagnetic model of the antenna
array. With this model, it is difficult or impossible to account for the realistic effects of
a curved lossy earth. For the horn array data, a new technique is derived to extract the
mutual coupling matrix from the data. The horn array is not modeled numerically. The
resulting mutual coupling matrix is shown to be sensitive to the angle of arrival. This
should not be the case since, as shown in Appendix A, the mutual coupling matrix is only
dependent upon the geometry of the array and the frequency of operation. However, even
with these{difficulties, it is still illustrative to process the measurements.
4.1 Monopole Measurements

In chapter 2, the simulations are performed on arrays designed to resolve
narrowband signals that can occur over a bandwidth of one octave. To prevent the
formation of grating lobes ‘which leads to ambiguous angles of arrival, the arrays are
designed to have an inter-element spacing of A/2 at the highest frequency of operation.
This leads to strong mutual coupling at the low end of the operational bandwidth.

In this chapter the monopole arrays are not specifically designed to resolve
narrowband signals over a wide bandwidth. Therefore the mutual coupling effects are not

nearly as significant as in chapter 2. This can be determined by examining the spacing
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in wavelengths of the three arrays operated at their respective frequencies. For the linear
array, the spacing is 0.4A. In chapter 2 the spacing varies from 0.25A to 0.5\. For the
cross array the spacing in this chapter is 0.453A. In chapter 2 the separation between
adjacent elements in the cross array varies from 0.2\ to 0.4\. For the circular array in
this chapter, the separation between adjacent elements is 0.347A. In chapter 2, this
spacing varies from 0.19Ato 0.382A. Ip chapter 2 the separation between elements is
much smaller since the arrays are designed to operate over one octave. This leads to
significant mutual coupling effects which hinder the ability of the direction finding
algorithm to resolve two signals with a small angular separation. In this chapter, the
arrays are not designed for this purpose and therefore the mutual coupling effects are less
significant.

In this section, the terminal impedance matrix from chapter 2 is used to
compensate for the mutual coupling effects in the monopole measurements. These
measurements are made with linear, cross and circular arrays as in chapter 2. The
antenna arrays are modeled with the method of moments to determine the effects of
mutual coupling. The terminal impedance matrix from the moment method model of the
antenna array is then used to compensate for the mutual coupling effects in the
measurements.

4.1.1. Antenna Arrays

The measurements are made with linear, cross, and circular monopole arrays. At

the frequencies of interest, the earth can be considered to be a perfect conductor and

therefore the monopoles can be considered to be dipoles. Each monopole is 2 meters
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long which corresponds té between 0.18 and 0.40 wavelengths at the frequencies of
interest. The diameter of the monopole is 2.5 mm with a dielectric coating of "glass fibre
reinforced plastic" which extends the outer diameter of the monopole to 7.55 mm [51].
Each monopole is connected to a high input impedance amplifier. These elements are
used in linear, cross, and circular arrays to determine the effects of mutual coupling on
the direction finding algorithms described in Appendices B through E.

The monopoles are formed into a linear array as described in chapter 2. For this
array, the incident signals are from two independent transmitters located approximately
200 meters from the array with a frequency of 60 MHz [51]. Since the transmitters are
independent, the signals are uncorrelated although they are at the same nominal
frequency. The inter-element spacing is 2 meters which corresponds to 0.4 wavelengths
at 60 MHz. This spacing prevents the formation of grating lobes which lead to
ambiguous angles of arrival. Three sets of data are used to determine the resolution
capability of the algorithms for actual measurements. In all cases, the signals are at 60
MHz with angles of incidence at 64° and 78°.

The measurements are also made with a cross array. The shortest distance
between elements in the cross array is 5.0 meters. The signals are also from independent
transmitters located 200 meters away from the array but with frequencies of 27.185 MHz
[51]. With this frequency and spacing, grating lobes begin to appear in the antenna
pattern which lead to ambiguous angles of arrival. Only one set of data is available for
the cross array.

The final set of measurements are made with a circular array. In this case the
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transmitters are 60 meters away fiom the array. The radius of the array is 5.0 meters and
the frequency is again 27.185 MHz [51]. At this frequency, no grating lobes appear in
the antenna pattern, and therefore no ambiguous angles of arrival appear in the spectrum.
For this array, two sets of data are available.
4.1.2 Measurement Setup

The system in figure 83 is used to produce the in-phase and quadrature
components of the incident signal at baseband [52]. In this block diagram, the signal is
first received by a monopole antenna element connected to a high input impedance
amplifier. This signal is then mixed with a variable local oscillator. The frequency of
this oscillator is adjusted to produce a replica of the signal at 40 MHz. This signal is
then filtered to restrict the bandwidth of the signal to 9 kHz. This new signal is then
mixed with a second local oscillator at a fixed frequency of 39.9375 MHz. This produces
a replica of the original signal at 62.5 kHz. This signal is then sampled at 83.3 kHz to
produce the digital signal. The 9 kHz bandpass filter prevents information from being
lost by sampling less than the Nyquist rate. Next, this signal is multiplied with a complex
exponential at 62.5 kHz to produce the quadrature components of the signal at baseband.
This set up is used behind each monopole element to produce the signals used in the
direction finding algorithms.

Mathematically, the signal at the i antenna element is

x,(t) = A,(t)cos(wt + ¢, () - T (104)

The amplitude is different from element to element due to mutual coupling in the array
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Figure 83: Receiver for Each Monopole Element

although it changes very little with respect to time. The phase at each element is different
because of the physical separation between the elements. The amplitude and phase terms
may vary slightly with time due to noise and modulation on the signal. This signal

emerges from the analog to digital converter as

x,(k) = A, (k) cos ( 3"2”‘ + b, (K)) - (105)

Note that although the signal is undersampled, no information will be lost since the

bandwidth of the signal has been restricted to 9 kHz. This signal can be expressed as a

sum of complex exponentials as

_ A, (k) [e (22K 4 4 0) . e-j( sk qu))] ‘ (106)
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After multiplying by the complex exponential and simplifying, the output of the multiplier

in figure 83 is

A (k + -
x, (k) = 1; )[ej((:hrk) OISR (107)

For even k, the output x,(k) reduces to the in-phase component

x.(k) = A,(k) cos(d;(k)) - (108)

For odd k, the output becomes the quadrature component

x,(k) = -A, (k) sin (¢, (k)) - (109)

The final signal used in the direction finding algorithms is

yik) = x (k) + jx, (k) - (110)

Notice that for no amplitude or phase modulation, the in-phase and quadrature
components are constant for all time.
4.1.3 Antenna Model

The monopole arrays are modeled with the method of moments as described in
Appendix A. At the frequencies of interest, the earth can be considered approximately
a perfect conductor [44]. Therefore, the monopoles are modeled as dipoles as in chapter
2. Since each monopole is 2 meters long, each dipole is 4 meters long. Three pi;:cewise
sinusoidal modes are used to represent the current on the dipole as in chapter 2. Each

element contained a dielectric coating of "glass fibre reinforced plastic" [51]. The
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dielectric constant of this coating affects the calculation of the moment method impedance
matrix. Unfortunately, the dielectric constant of the coating is not known. However, it
is found that the dielectric constant of the coating did not effect the impedance matrix
much since the elements are terminated with a high input impedance. Therefore the
dielectric constant is estimated as €, = 2.6 +j0.0 since this is the dielectric constant of
glass reinforced polystyrene [S0]. The load impedance of the monopole is calculated
using the circuit diagram of the amplifier. The input impedance of the dipole is then
twice that of the monopole [35]. This model does not account for the gain and phase
errors introduced by the amplifier. These errors occur since each amplifier has a slightly
different frequency response. The change in frequency response between amplifiers,
although small, can significantly affect the spectrum of model based spectrum estimators.
The moment method model of the antenna array calculates the predicted signal at the
terminal; of the monopoles with mutual coupling but without the gain and phase errors
introduced by the amplifiers.

The terminal impedance matrix for the antenna array is calculated using equation
(22). This matrix is then applied to the measurements to eliminate the mutual coupling
effects from the spectrum. This matrix is, of course, susceptible to any errors in the
modeling of the monopole arrays.
4.1.4 Results

In this section the terminal impedance matrix is used to compensate for the mutual
coupling effects. In each of the figures, four spectra are shown. The first is the ideal

spectrum which represents the best possible spectrum. In this case, no mutual coupling
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is present and there are no gain or phase errors present in the signal. Next, the simulated
spectrum for the data is shown. This spectrum is calculated from the moment method
model of the antenna array. This spectrum includes the effects of mutual coupling but
not any gain or phase errors. The third spectrum in the figures is from the actual
measurements. The final spectrum is the result of processing the measurements with the
terminal impedance matrix from the moment method model of the array. These four
spectra are calculated for each set of measurements with each of the direction finding
algorithms in chapter 2.

In all the spectra, two sources are used to determine the effects of mutual coupling
on the resolution capability of the direction finding algorithms. The signals arrive from
two independent sources at approximately the same frequency and therefore are
uncorrelated. For the ideal and simulated spectra, the sources are separated by 500 KHz
so that they will be uncorrelated. The spectra in these two cases are an average of twenty
simulations. In all cases the spectra are computed every 0.1°.

For each of the direction finding algorithms, the covariance matrix is calculated
using the "covariance method" as in chapter 2 [46]. For all except the cross array data,
16 snapshots of the quadrature components are available. For the cross array, 32
snapshots of data are available. The small number of snapshots may lead to an inaccurate
estimate of the covariance matrix which may effect the direction finding algorithm.

For each set of data, the SNR is calculated. The SNR is calculated.by first
computing the power in the measured data. This represents the signal plus noise power.

Next the covariance matrix is decomposed into its eigenvalues and eigenvectors. The
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eigenvalues not associated with the signal are approximately equal to the noise power.
The mean value of these eigenvalues is used to estimate the noise power. The signal
power is then calculated by subtracting the noise power from the signal plus noise power
calculated previously.

4.1.4.1 Beamformer Algorithm

The beamformer algorithm calculates the spectrum by scanning the main beam of
the antenna array. This algorithm is computationally inexpensive although its resolution
is limited by the Rayleigh criterion [46]. This algorithm is applied to each of the sets of
data for the linear, cross, and circular arrays. The results are shown in figures 84 throﬁgh
7.

The results for the first set of linear array data are shown in figure 84. The ideal
spectrum assumes no mutual coupling or other sources of error are present. The
simulated spectrum shows the result of using the moment method model of the array
which includes the effects of mutual coupling. Notice that both peaks for this spectrum
are shifted toward larger angles of incidence. The spectrum from the actual
measurements shows that the peaks are closer to the actual signals than both the ideal and
simulated spectra, and that the peaks are close to being unresolvable. The compensated
spectrum shows the results of applying the terminal impedance matrix to the
measurements. Notice that this yields the best estimate of the actual signals although the
peaks are still very close to being unresolvable. Figure 84 shows that the estimate of the
angles of arrival is improved for the first set of data by applying the terminal impedance

matrix before processing the data.
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The results of the second set of data for the linear array are shown in figure 85.
The ideal spectrum and simulated spectrum show the same angles of arrival as in figure
84 because the only difference is a slightly smaller SNR. The spectrum for the
measurements, however, clearly shows only peak in the spectrum. In this case, the two
signals are unresolvable. After applying the terminal impedance matrix to the
measurements, the compensated specttum shows that the two signals are still
unresolvable. Figure 85 shox.vs that both the measurements and the corrected spectra can
not resolve the two signals although the parameters are almost identical to the those of
figure 84.

The spectra for the third data set are shown in figure 86. Again, the ideal and
simulated spectra are approximately the same as those in figures 84 and 85 since the only
difference is a slightly larger SNR. For this data set, however, the measurements clearly
show two signals in the spectrum. Notice, however, that the angle estimates are not as
good as those in figure 84. After applying the terminal impedance matrix to the
measurements, the compensated spectrum shows that the estimated angles of arrival are
now slightly farther away from the true angles of incidence. Figure 86 shows that using
the terminal impedance matrix to account for mutual coupling causes a slightly worse
estimate of the angles of arrival.

The results for the cross array with the Beamformer algorithm are shown in figure
87. The ideal and simulated spectra show that the mutual coupling has very little effect
on the spectrum. The spectra for the measurements and compensated data are also almost

identical. In all cases, the spectra are unable to resolve the two signals because the
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signals do not meet the Rayleigh criterion. Notice that aside from the main lobe centered
around 270° there is also a lobe around 90°. This occurs because a grating lobe is present
in the antenna pattern. Figure 87 shows that the beamformer algorithm is unable to
resolve the signals for the cross array and that compensating for mutual coupling has
almost no effect on the spectrum.

The spectra for the two sets of circular array data are shown in figures 88 and
figure 89. In both figures, all four spectra only show one angle of arrival. In figure 88
and 89 the ideal and simulated spectra are almost completely identical. This is also true
for the measurements and compensated spectra. Figures 88 and 89 show that
compensating for mutual coupling has almost no effect on the spectrum for circular arrays
with a large SNR.
4.1.4.2 Capon’s Algorithm

Capon’s algorithm is discussed in Appendix C. The spectrum in this case is
computed by minimizing the output power subject to the constraint that the output equals
unity at the observation angle [5,46]. This algorithm is applied to the linear, cross, and
circular array sets of data. The ability of the terminal impedance matrix to compensate
and improve the spectrum of the actual measurements is investigated in the next 3
sections.

The spectra with Capon’s algorithm for the first set of linear array data are shown
in figure 90. Notice that the ideal spectrum is very smooth and yields a very accurate
estimate of the angles of arrival. The simulated spectrum which includes the effects of

mutual coupling also yields a smooth spectrum with an accurate estimate of the angles
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of arrival. The measuremeﬁts, however, yield a spectrum with many spurious peaks along
with a good estimate of the actual angles of arrival. These spurious peaks do not
disappear when the mutual coupling effects are compensated for as shown by the fourth
spectrum. This indicates that either the terminal impedance matrix used for this array
does not accurately model the mutual coupling or that there or other sources of error.
The other possible sources of error are gain and phase errors which arise in practical
situations since each antenna element has a amplifier with a slightly different frequency
response. Figure 90 shows that while the ideal and simulated spectra yield relatively
accurate spectra, the measurements and compensated spectra show spurious peaks along
with the angles of arrival.

Figure 91 shows the spectra from Capon’s algorithm for the second set of linear
array data. The ideal and simulated spectra are almost exactly the same as in figure 90
since the SNR is only slightly smaller. The measurements show a reasonably accurate
estimate of the angles of arrival along with other smaller spurious peaks. The
compensated spectrum, however, has a peak in the spectrum away from the actual angles
of arrival that is stronger than one of the signals. In this case, the compensated spectrum
is worse than the measurements. Figure 91 shows that spectrum becomes a less accurate
estimate of the actual spectrum when the effects of mutual coupling are compensated.

The spectrum from Capon’s algorithm for the third set of linear array data is
shown in figure 92. The ideal and simulated spectra are almost the same as the in figures
90 and 91 since only the SNR is slightly different. For this set of data, both the

measurements and the compensated spectra yield very poor estimates of the actual




Spectrum (dB)

Spectrum (dB)

138

-5

_ l!deal: pe'aks at 62'.9, 78.5 '
-.—. Simulated: peaks at 64.5, 77.4

Measurements: peaks at 62.3, 80.54
- - Compensated: peaks at 61.9, 79.7

-

I
i
by
J .
. . i Cn
-10 Rk f ]
i .
. ol 3 y
g : ! \ P T T
~ :: vy \ / t .
-15f 1) oM ok - .
! \ 1 - v,
Y ! I K
Y ) i,
l ‘.‘. ' ’ ‘ .'.
-20F ! Ve ' v , ~ i
! \ [ A - ~
/ \ /' \ /, - N .
/ \ \ /
/ \ - / \ ;
-25 i ~ -
_30 1 i 1 1 1 H H L
0 20 40 €0 80 100 120 140 160 180
Angle (deg)
Figure 90: Capon, Linear Array, Angles = 64°, 78°
’ ’ ’ ’
Frequency = 60 MHz, SNR = 41.9 dB
0 1] i T T \ T
f\ __ ldeal: peaks at 62.8, 78.5
,' ' —.-. Simulated: peaks at 64.5, 77.5
-5 I \ Measurements: peaks at 65.7, 79.9+
,' Compensated: peaks at 67.8, 82.3
P Y AN AL I Nt taiatt et Lo ST Lt
\
1 \ / \
~15} [ ~ i
1 \\ / N N \\
! o/ -
i N \
~20r I \ 4
! \
] \
\
25} ) N
’ No
/ »
~30}F , / R
_ 7
—35 C e .
_40 L 1 1 1 1 L L :
0 20 40 60 80 100 120 140 160 180
Angle (deg)

Figure 91: Capon, Linear Array, Angles = 64°, 78°,
Frequency = 60 MHz, SNR = 41.5 dB




139

spectrum. Both of these épectra contain several strong spurious peaks away from the
actual angles of arrival. In this case, the compensated spectrum is almost the same as the
measurements except shifted in magnitude.

The results for the cross array with Capon’s algorithm are shown in figure 93.
The ideal and simulated spectra show two peaks close to the actual angles of arrival. The
peaks from the simulated data are actually slightly closer to the actual signals than those
of the ideal signal. In both cases, an ambiguous angle of arrival begins to emerge in the
spectrum at approximately 100°. This peak arises due to a grating lobe in the antenna
pattern. The measurements also indicate two signals near the actual angles of arrival.
These peaks, however, are not as close to the actual angles of arrival as the ideal and
simulated data. The compensated spectrum shows that the change in the spectrum is
‘insignificant when the terminal impedance matrix is used to compensate for the mutual
coupling present. ‘Figure 93 shows that the Capon’s algorithm can clearly resolve the two
signals and that compensating for the mutual coupling effects has virtually no effect on
the spectrum.

The spectra from Capon’s algorithm for the first and second sets of circular array
data are shown in figures 94 and 95. In both figures the ideal and simulated spectra yield
very smooth and accurate estimates of the angles of arrival. The measurements yield
accurate estimates of the angles of arrival but also strong spurious peaks at other angles
of arrival. Using the terminal impedance matrix to compensate for the mutual coupling
produces almost no change in the spectra in both figures. Figures 94 and 95 show that

the measurements produce spurious peaks which are unchanged when the signal is pre-
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processed with the terminajl impedance matrix.
4.1.4.3 Linear Prediction

In this chapter, the linear prediction algorithm is not applied to the data. As stated
earlier, only 16 snapshots of data are available for the linear and circular arrays, and 32
snapshots for the cross array. It is found that since the covariance matrix is 9 by 9, the
covariance matrix estimate is not very accurate. This leads to a inaccurate calculation of
the model parameters and therefore a poor estimate of the spatial spectrum. It is
interesting to note that while the covariance matrix is not sufficient for the linear
prediction algorithm, it is sufficient for Capon’s algorithm. However, the angle estimates
in Capon’s algorithm may improve if more snapshots are used to estimate the covariance
matrix.
4.1.4.4 MUSIC algorithm

The MuUItiple Slgnal Classification algorithm, as discussed earlier, computes the
spectrum by searching for angles of arrival that are orthogonal to the noise subspace.
This algorithm is shown in chapter 2 to yield the best spectrum of the four techniques
considered here. It is applied to the measurement data in the following 3 sections.

The MUSIC spectra for the first set of linear array data is shown in figure 96.
The ideal spectrum which is calculated assuming no mutual coupling or other sources of
error are present is very smooth with a very accurate estimate of the angles of arrival.
The simulated spectrum from the method of moments model of the array also yields a
very smooth spectrum and a very accurate estimate of the angles of arrival. The spectrum

from the measurements is very similar to the spectrum from the simulated data. The
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compensated spectrum shov?s that once the mutual coupling effects are accounted for with
the terminal impedance matrix, the new spectrum is only slightly better than the original
data. Notice, however, that all of these spectra are very smooth compared to those in
figures 90 through 95. Figure 96 shows that MUSIC spectrum from the first set of linear
array data is very smooth with very accurate estimates of the angles of arrival. The angle
estimates, however, are only slightly improved by the compensating for the mutual
coupling effects with the terminal impedance matrix.

The MUSIC spectra for the second set of linear array data are shown in figure 97.
The ideal and simulated spectra are approximately the same as in figure 96 since only the
SNR is slightly different. The MUSIC spectrum for the measurements also yields a very
smooth spectrum with accurate estimates of the angles of arrival. The compensated
spectrum shows that removing the effects of mutual coupling improves both estimates of
the angles of arrival. Figure 97 shows that compensating for the mutual coupling effects
improves the MUSIC spectrum for the second set of linear array data.

The spectra for the third set of linear array data is shown in figure 98. The ideal
and simulated spectra are again the same as in figures 96 and 97 since the SNR is almost
the same. The measurements again yield a smooth accurate estimate of the angles of
arrival. The compensation for mutual coupling, however, does not improve the spectrum
as in the previous cases. Figure 98 shows the compensated spectrum is virtually the same
as the spectrum for the measurements. N

The spectra for the cross array with the MUSIC algorithm are shown in figure 99.

The ideal spectrum clearly indicates the two angles of arrival. It also indicates a spurious
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peak due to the grating lébe in the antenna pattern. The simulated spectrum which
includes the effects of mutual coupling is the middle spectrum in figure 99. Notice that
it also yields a very accurate estimate of the angles of arrival. The measurement and
compensated spectra have a minimum value of -15 dB. These two spectra are almost
identical. Figure 99 shows that MUSIC algorithm can clearly resolve the two signals and
that compensating for the mutual coupling in the cross array has very little effect on the
spectrum.

The spectra for the two circular array sets of data are shown in figures 100 and
101. The ideal signal yields a smooth spectrum with peaks very close to the actual angles
of arrival. The simulated signal also yields a smooth spectrum with peaks close to the
actual angles of arrival. The measurements produce a very clean spectrum with accurate
estimates of the angles of arrival. In both figures, however, the minimum value in the
spectra are much larger than that of the simulated signal. This is in contrast to the linear
array where the floor of the simulated spectrum is approximately the same as that of the
measurements. In both figures 100 and 101 the compensated spectrum yields a slightly
better estimate of the angles of arrival than from only the measurements. Figures 100 and
101 show that the angle of arrival estimates are improved by using the terminal
impedance matrix to compensate for the mutual coupling effects.
4.2 Horn Array Data

The terminal impedance matrix can be calculated from the method of moments
model of a thin wire antenna array as shown in section 2.3.1. A numerical model for the

horn array is very complex, however, and is not presented here. Instead, a new method
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is presented to calculate the terminal impedance matrix directly from the measurements.
For convenience, this new method is derived for a four element linear array. It
is applicable, however, to a linear array of any size. The voltage at the output of a four

element array is given by
le Z12 213 ZJA

Vl Il
tf? = 221 ZZZ 223 zu. 1.2 (111)
Vs Zyy 2Z3; Z33 23| |13
V4 Z41 242 243 Z44 I4
where V|, V,, V,, and V, are the output voltages calculated using the known angle of

arrival, I}, I, I, and I, are the measured currents, and Z; is the mutual coupling between

the i and j™ antenna elements [35]. The voltage at the i antenna element is

Vi = _Aej28d1008¢ (112)

where d, is the distance from the coordinate origin to the i antenna element, and ¢ is the
known angle of incidence. Since the array is linear and the elements are equally spaced,
the impedance matrix is Toeplitz [35]. Therefore, of the sixteen elements in the
impedance matrix, only four of them are unique. This permits equation (111) to be

simplified to

Vl le ZlZ Zl3 Zl4 Il

I’2 - 212 le 212 213 I2 (1 13)
V‘:i ZJ.3 Zi2 zll zl2 I3 b

V4 Zl4 Z].B ZlZ zli I4

This equation can be rearranged to yield
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[A I, I, I, I,]| (211
V2 _ I, I, + I3 I, 0|2, (114)
V3 Iy I, + I, I, 012,
Vi Iy I, I; I, {21,
Solving this equation for the impedance elements yields
2y I I; I, L] [V
243 _ I, I, +I; I, 0 Vi ‘ (115)
243 I, I, +I, I, O v
zl4 1-4 IS IZ Il ‘74

The voltages are known to within a constant since the angle of arrival is known. The
currents are known since they are measured at the terminals of the antenna. If all the
current values I, through I, are unique, the matrix in equation (114) will have a non-zero
determinant. This is the case for all angles of incidence except broadside. The resultant
system is then solved for the impedance elements Z,,, Z,,, Z,;, and Z,, using equation
(115). The terminal impedance matrix is then determined to within a constant by using
equation (113). The matrix is only accurate to within a constant since the amplitude, A,
in equation (112) is unknown. This matrix is then used to compensate for the mutual
coupling effects. The complex constant will be insignificant since the spectrum from the
MUSIC algorithm is normalized.

The results for one angle of arrival are shown in figures 102 and 103. The ideal
spectrum in figure 102 assumes that there is no mutual coupling between the horn
elements and that there are no gain or phase errors in the signals. The actual spectrum

is calculated from the unprocessed horn measurements. The corrected spectrum is
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obtained by first pre-processing the measurements with the terminal impedance matrix.
This matrix is derived using equations (112) and (115). The results are clearly
demonstrated in figure 103. The ideal spectrum yields an unbiased estimate of the angle
of arrival with a very sharp peak. The actual spectrum yields a biased estimate of the
angle of arrival and has a slightly broader peak. This may be the result of gain and phase
errors. The corrected spectrum is obtaiped by first pre-processing the data with the
terminal impedance matrix before computing the MUSIC spectrum. In this case the peak
is broader but the spectrum yields an unbiased estimate of the angle of arrival.

Figures 104 and 105 show the result of using a different angle of arrival to
calculate the impedance matrix. In these figures the ideal and actual spectra are the same
as in figures 102 and 103. The impedance matrix is calculated using the measurement
data for 65.3° instead of 44.7°. The corrected spectra in figures 104 and 105 show the
result of applying this matrix to the measurement data. In this case, the improvement in
the spectrum is much less than in figures 102 and 103. The corrected spectrum in figures
104 and 105 is not as good as the spectra in figures 102 and 103 since the terminal
impedance matrix is different.

The terminal impedance calculation changes for different angles of incidence.
Figures 106 and 107 show the magnitude and phase of the unique terminal impedance
elements for 44.7° and 65.3°. In these figures the x-axis represents the impedance
element. For example, 4 on the x-axis represents the impedance element Z,,. and 9
represents the element Z,,. Notice in figure 106 that the magnitudes of the elements are

different for each angle of incidence. In figure 107 the phase of each element is varies
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greatly depending upon the angle of incidence. The impedance matrix, however, is
invariant with respect to the angle of incidence as shown in Appendix A. Figures 106
and 25 show that the impedance elements calculated using equations (112), and (115) are
different for different angles of incidence.

The variation in impedance values may be due to measurement noise. This noise
causes the current values I, I,, .., I, to depart from the values expected by the
displacement in position. This variation in current causes a variation in the impedance
matrix. From the discussion of the method of moments in Appendix A and chapter 2, the
impedance elements do not change due to angle of incidence. They are solely dependent
upon the geometry of the antenna and frequency of operation.

4.3 Measurement Conclusions

In this section, the terminal impedance matrix is applied to two sets of
measurements. The first set of measurements is obtained from a colleague in Germany.
These measurements consisted of time domain data from various monopole arrays. The
second set of data is obtained from WL/AARM-3 at Wright-Patterson Air Force Base.
This data consists of the magnitude and phase of the voltages at one frequency at the
terminals of a 16 element horn array. These sets of measurements are used to investigate
the ability of the terminal impedance matrix to compensate actual measurements.

The spectra for the monopole measurements are compared to the spectra generated
by pre-processing the measurements with the terminal impedance matrix to remove the
mutual coupling effects. For the beamformer algorithm it is shown that sometimes the

pre-processing improved the angle estimates, sometimes no change is apparent, and
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sometimes the angle estirr;ates actually became worse than without pre-processing. In
particular, when the signals are close to being unresolvable as in figure 84, correcting for
mutual coupling improves the angle estimates. If the signals are already clearly
distinguishable, correcting for mutual coupling actually makes the angle estimates worse
as shown in figure 86. This is exactly the same phenomenon that occurred for the
simulations as can be seen by comparing figure 86 with figure 96 of section 2.6.1. In
particular, compare figures 84 and 4 with 12 and 14. For Capon’s algorithm, the
spectrum from the measurements and compensated spectrum always shows spurious
peaks. Compensating for the mutual coupling effects does not improve the spectrum and
sometimes makes it worse. The linear prediction algorithm could not be applied since
the limited number of snapshots prevented an accurate estimate of the covariance matrix.
The MUSIC algorithm performed better than the other three algorithms. The spectra did
not shovy any spurious peaks except in the case of the cross array and that is due to a
grating lobe in the antenna pattern. In all cases the spectra clearly shows the two signals.
In all but one case, compensating for the mutual coupling effects improved the angle
estimates. In the one case that did not show improvement, the estimates did not become
worse after compensating for mutual coupling. The spectra in this section show that the
MUSIC algorithm performs better than all the other direction finding algorithms on actual
measurements with improvement or no change when the terminal impedance matrix is
used to compensate for the mutual coupling effects. N

The compensation of the mutual coupling effects in the measurements may be

affected by the antenna model. In particular, the earth is not exactly a ground plane and
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therefore, the monopoles rhay not be considered to be dipoles. The dielectric constant of
the coatings on the monopoles is also only approximate. This parameter effects the
calculation of the moment method impedance matrix and therefore the terminal impedance
matrix. A more accurate model of the antenna array may yield a better compensated
spectrum.

The compensation of the measurements may be affected by gain and phase errors.
These errors arise since each amplifier has a slightly different frequency response.
Although they are schematically the same, the frequency response may be different due
to the components in the amplifier. The gain and phase errors may have as much effect
on the spectrum as mutual coupling. Therefore, the spectra may be completely
compensated for in terms of mutual coupling but the gain and phase errors prevent any
significant improvement in the spectra.

The lack of improvement of the spectrum with the terminal impedance matrix may
also be due to the limited number of snapshots. For all the measurements except the
cross array, only 16 snapshots are available. For the cross array, 32 snapshots are
available. Since the number of snapshots is small, the estimate of the covariance matrix
is not as accurate as in chapter 2 where 300 snapshots are used. This is not a factor with
the beamformer algorithm since the covariance matrix is not required and the algorithm
can be successfully applied even with one snapshot. In the case of Capon’s algorithm,
this may be a significant factor since the matrix is inverted which may enhance the errors
caused by the poor estimate of the covariance matrix. The limited number of snapshots

prevents the linear prediction algorithm from yielding a suitable spectrum. The small
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number of snapshots does not seem to effect the MUSIC algorithm, however. The
MUSIC algorithm performed extremely well on all the measurements.

The variation in the signal over time may also be the reason the spectra are not
improved much with the terminal impedance matrix. The magnitude and phase of the
signal at one element in the array is shown in figures 108 and 109. Note that the
amplitude and phase varies as a function of time. Although this variation is small, it may
be significant when calculating the spectra.

The horn array is not a thin wire array and therefore the equation for the terminal
impedance matrix in section 2.3.1 can not be used. Therefore, the terminal impedance
matrix is estimated in a new manner using the known angle of incidence and the currents
at the terminals of the array. Figures 102 and 103 show that the estimate of the angle of
arrival is improved by using the terminal impedance matrix calculated as described in this
section. Unfortunately, the calculation of the terminal impedance matrix from the data
varies as a function of angle. From Appendix A, however, we know that the impedance
matrix is invariant with respect to the angle of arrival. Therefore, the variation in the
terminal impedance matrix must be due to some other factor such as measurement noise.
Since the impedance matrix calculation varies significantly with angle of incidence, it is

not practical to use it to compensate for the mutual coupling effects.
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CHAPTER V

CONCLUSIONS

Super-resolution algorithms are very susceptible to mutual coupling effects. In
addition, there may be an object in the near field of the antenna array that scatterers
energy toward the array and hinders the resolution of the signals. In this work, the effects
of mutual coupling and a near field scatterer are examined quantitatively. Techniques
are also presented to compensate for these effects and restore the performance of the
super-resolution algorithms.

In chapter 2 the effects of mutual coupling on several different direction finding
algorithms is investigated. This is done by comparing the spectrum estimates due to three
different' signals. The first is the ideal signal which assumes no mutual coupling is
present. This represents the best possible spectrum. The actual signals are calculated
from the method of moments model of the array. This signal includes all the mutual
coupling effects. It is shown that a terminal impedance matrix representing the mutual
coupling between the terminals of the array can be derived from the method of moments
model of the array. This matrix is then applied to the actual signal vector to correct for
the mutual coupling effects. These three signals are generated for various array

geometries with various antenna elements. These signals are used to compute the spectra

with the Beamformer algorithm, Capon’s algorithm, the Linear Prediction algorithm and
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the MUSIC algorithm. The results show that the mutual coupling has an adverse effect
on the resolution capability of the super resolution algorithms and that these effects can
be virtually eliminated from the spectra by pre-processing the signal with the terminal
impedance matrix.

In chapter 3 the effects of a near field scatterer on the spectrum generated from
the MUSIC algorithm are investigated. This scatterer produces interference in the form
of spherical waves that degrade the ability of the MUSIC algorithm to resolve two signals
with a small angular separation. To determine the effects of a scatterer, a linear array
with the near field scatterer is modeled using a hybrid technique that combines the
Method of Moments and the Uniform Theory of Diffraction [34,35]. The effects of the
scatterer are then compensated for using a modified terminal impedance matrix and a new
array configuration. The modified terminal impedance matrix accounts for the additional
mutual goupling between the array and scatterer. The new array configuration is used to
suppress the spherical waves from the scatterer. To account for the new array
configuration, the search vector of the MUSIC algorithm is modified. Results are
presented for various scatterers. It is shown that the terminal impedance matrix and the
new array configuration can be used to virtually completely suppress the effects of a near
field scatterer.

In chapter 4, the terminal impedance matrix is applied to actual measurements to
compensate for the effects of mutual coupling. This is first done on a variety of
monopole arrays. The terminal impedance matrix is also applied to an array of horn

elements. In this case, a new technique for calculating the terminal impedance matrix
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from only measurements is presented. It is then used to compensate for the effects of
mutual coupling.

In this report, it is demonstrated that the electromagnetic environment in which
the array operates has significant adverse effects on the signal processing algorithms.
However, by knowing the electromagnetic environment, modifications can be made to
restore the performance of these algorithms. In this work, two factors are investigated.
Fifst, it is shown that the mutual coupling between the antenna elements is significaﬁt for
super-resolution algorithms and that its effects can be virtually eliminated by using a
terminal impedance matrix derived from the method of moments model of the array.
Second, it is shown that the effects of a near field scatterer can be suppressed by

modifying the array configuration and the signal processing algorithm.




APPENDIX A

METHOD OF MOMENTS

The reaction integral equation is one of several integral equation formulations [42]
that may be used to determine the currer;t induced in an antenna illuminated by a plane
wave. This equation is reduced to a system of linear equations using the method of
moments. The Galerkin formulation is used where both the expansion and testing
functions are piecewise sinusoids [40,41]. This technique yields a relatively small system
of equations for thin wire antennas. The solution of the system of equations yields the
current on the antenna array. The voltages at the antenna terminals are found by
multiplying the current at the antenna terminals by the antenna load impedance for each

element.

The reaction integral equation for an arbitrary scatterer is shown below

—

[(Fu B -H, H%) ds = ~[(Fy Bt -Hy B ds  m=1,2,...,N (116)
g g

m

where J, and M, are the m™ testing functions, E* and H* are the scattered fields, and Ef
and H' are the incident fields. Since the wire is non-magnetic, the equivalent magnetic

LS

current is zero and the reaction integral reduces to
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fj ‘Esds = —fJ’ Elds (117)

The scattered field is now expressed as.arising from a series of piecewise sinusoidal

current modes as shown in figure 110 [35]. This yields

ds = -[J, Fds - (118)

In this expression E_® is the field from the n" piecewise sinusoidal mode and I_ is the n®

complex current. The testing functions, J, are also piecewise sinusoids which produces
the efficient Galerkin formulation. In general, for the m"™ mode of the expansion equation

(118) becomes

]
ey

N
Yy I, fjmfnsds = —fjm-E"ids m=1,2,3,...,N (119)
g g

This can be expressed as [35]

N
Y z,I,=V, m=1,2,...,N (120)

n=1

Zy = [F,Blds v, = -[3,Elds (121)
g
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Figure 110: Piecewise Sinusoidal Current Expansion on One Dipole

where Z_, is the mutual coupling between modes m and n, I, and I are the currents at
modes n and m respectively, V_ is the excitation at mode m, E' is the incident electric
field, and ds is the differential length along one dipole.

The number of piecewise sinusoids needed to adequately represent the current on
a thin wire antenna is dependent upon the length of the antenna element. Since the dipole
elements are approximately half a wavelength long at the center of the bandwidth, the
current on them can be adequately represented by three piecewise sinusoidal modes. Note
that from equation (121) that the impedance matrix Z_, is not dependent upon the incident
field. This matrix is unique to the geometry of the antenna array and the frequency of
the incident signal. Note that in contrast, the excitation V_, is dependent upon the incident
field and therefore the angle of arrival. .

After Z, and V  are calculated, the modal current on the antenna elements is

found using equation (120). The voltage at the n® terminals is then calculated with
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yle = 1Te.7 (122)

n

where 1, is the modal current at the n™ terminals of the antenna array, and Z,_ is the load
impedance at the n™ terminals. Therefore, the voltage vector representing the actual

signal that includes the effects of mutual coupling is

v, = [V V0 V2T (123)

This voltage should not be confused with the voltage in equation (120).




APPENDIX B

THE BEAMFORMER ALGORITHM

The beamformer algorithm is a simple and computationally inexpensive technique
for calculating the spectrum [54]. This algorithm is analogous to the Discrete Fourier
Transform (DFT) and therefore its resolution is limited to that specified by the Rayleigh
criterion [54].

To derive the Beamformer algorithm, let there be one source illuminating an M
element antenna array. The time variation is assumed to be €. Mathematically, the

signal at the n™ antenna element is

u = Ae+j|3 (x,cosd + y,sind) (124)
—n
where A = the amplitude of the incident signal
B = the phase propagation constant

(x,,y,) = the location of the n" antenna element
¢ = the angle of arrival with respect to the x-axis.
The output at each of the antenna terminals of the array is multiplied by a complex

weight and added up to yield

Y S WU v wWalU, *e + wyu, = wHd (125)
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where the weights are shown as complex conjugates for convenience. The weights have

the from

Wx; - Bne-jﬂ (x,cosd’ + y,sind’) (126)

The output of the beamformer algorithm is equal to the expected value of y squared. In

other words

P($) = E[|F|2] = E[FF¥] = EL(WHT) (GwH) ] (127)

P($) = E[WHGTHW) = WHR, W (128)
where

R, = E[dd"] (129)

is the covariance matrix. Substituting equations (126) and (124) into equation (125)
shows the output y will be a maximum when ¢ = ¢'.

From an antenna point view, the beamformer algorithm corresponds to scanning
the main beam of the antenna pattern. The peak in the spectrum corresponds to the main
beam being pointed in the direction of the incoming signal. This value, however, will be
biased for multiple signals [54]. The smaller peaks in the spectrum correspond to a
sidelobe of the antenna array being pointed in the direction of the signal. The sidelobes,
and therefore the spurious peaks, can be made smaller by judiciously choosing the value

of B, [35, pp. 145-154]. This, however, widens the main beam and therefore decreases
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the resolution capability of the algorithm. This can be thought of spatial windowing and
is analogous to the windowing of temporal signals. From a signal processing point of

view, equation (125) corresponds to a Finite Impulse Response (FIR) filter with complex

!

weights.




APPENDIX C

CAPON’S ALGORITHM

Capon’s algorithm estimates the spectrum by minimizing the output power subject
to the constraint that the output equals unity at the current observation angle [5,46]. This
technique first designs a causal Finite Impulse Response (FIR) filter with the center
frequency at the observation angle ¢’. This filter is designed by requiring the average
output power to be a minimum subject to the condition that the output equals unity at the
current observation angle ¢’. The spectrum is generated by observing the average output

power as the observation angle is varied.

Let impulse response of the filter for the look angle ¢’ be

By = [By(1) hy(2) = hy(M)]17T (130)

where M is the length of the filter. This filter contains one tap for each antenna element.

The data used in the filter is given by the vector

%= [x(n) x(n-1) - x(n-(M-1))]17 (131)

In equation (131) each entry in the vector contains all the snapshots in time from one

particular antenna element. Note that this data is spatially reversed in the sense that the

highest numbered antenna entry is the first element in the vector and the first antenna
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element is the last entry in the vector. In the temporal case, this organization of the data

is called time reversal. The response of the FIR filter due to the data is

M
y(n) =3 hy(k) x(n-k) = B % (132)
k=1

The output power of the filter is -

P = E[|7|?] = E[§7*¥] = E[(AJR) (AIX)"] (133)
P = E[Ry % X" Byl = By R, B (134)

where R, is the correlation matrix for the time reversed data. However, using the fact

that

R, =R! =R, (135)

equation (134) becomes

P =Rl R: B . (136)

Since the power is a real number, P = P". Therefore, taking the complex conjugate of

both sides of equation (136) yields

P = Bf R, Fiy (137)
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The system transfer function is

M
N -7P (xcosd’ + y,8ind”y _ < H
H¢,(ej“’) = kE=1 h¢/(k) e k k = W¢/h¢/ (138)
where W¢/ - [e+jﬂ (x,cosd’ + y;sind’) e+jﬂ (xycosd’ + yusin¢’)] T (139)

The constraint that the output power of the filter be unity is expressed mathematically as

7By = 1 (140)

Therefore, the problem is to minimize

P=HiR, By (141)
subject to constraint of equation (140). This problem can be solved by first forming the
Lagrangian

L= HﬁRxE‘,/ + | (1—ﬁ'/¢’,{ﬁ¢/) + pt(1 -5;,{%/) (142)
where u is the Lagrange multiplier. The minimization problem is solved by setting the
complex gradient to zero. This yields

VEg(L) = R By + 0 + p*(-#y) =0 - (143)

Rearranging equation (143) and multiplying both sides by R yields
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]—7;/ = }L'R,;l V-}(b/ (144)

This is one of the two equations needed. Multiplying both sides by ;;;:} yields

Wy By = B Wy R: iy (145)

Using the constraint in equation (140) produces

1= W W R Wy - (146)

This is the second of the two equations. Solving for x” and substituting in equation (144)

yields

-1 -
By = Sx % (147)

Substituting this equation into equation (134) for the output power yields

Wy Re ReR: Wy WyR: Wy (148)
(Wi R iy ? (Wi Ry W) ?
p= —_1 (149)
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This is the response of the optimized filter tuned to the look angle ¢’. The response of

the filter for any angle ¢ is a spectrum estimate of x(n) and is given by

il

P(d) 1 (150)
(a(d) R *a(d))

a(d) = [eIPxcosd + yisind) | o +IB (xco0b + yysind) | T (151)

where a(¢) is the search vector.




APPENDIX D

LINEAR PREDICTION ALGORITHM

The linear prediction algorithm produces an estimate of the spectrum by
minimizing the mean square error between the actual value of one of the antenna
elements and the value predicted by a linear combination of the remaining elements
[45,46]. The predicted error is the difference between the predicted value and the actual
value. This error is minimized using a Finite Impulse Response (FIR) filter [46]. This
error is also white noise provided that the order of the filter is large enough. Next, the
system is inverted such that the white noise source drives the filter and produces the input
sequence. This new filter is an all pole Infinite Impulse Response (IIR) filter. The filter
coefﬁcieﬁts are then calculated subject to the constraint that the variance of the predicted
error is minimized. The result is an Autoregressive model of the system. This algorithm
produces a spéctrum estimate with a resolution better than that of Capon’s algorithm.

The mean square error between the actual value of one antenna element and its
predicted value is minimized to calculate the spectrum. The actual element chosen is
rather arbitrary in estimating the spatial spectrum [53]. For the linear array the element
farthest away from the origin is used. For the cross array, the element with tl}e most

negative position on the x-axis is used. The circular array uses the element located at ¢

= 225°. The choice of an element may be important in a particular case, but on the
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average any element is as good as any other element in calculating the spatial spectrum
[53].

The first step in calculating the spectrum using the linear prediction algorithm is
to predict one of the antenna element’s output as a linear combination of the other

elements. This can be expressed as

R(n) = -a,x(n-1) - a,x(n-2) - - - a,x(n-p) (152)
P

R(n) = -y a, x(n-k) (153)
k=1

where g (pn) is the predicted value and the number of antenna elements is M = P +
1. The error between the predicted and actual value is
e(n) = x(n) - R(n) (154)

Combining equations (153) and (154) yields

p
e(n) =Y a, x(n-k) (155)

k=0

where a, = 1. The mean square error is

o = E[|x(n)-R(n) |?] (156)
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o2 = Ele(n) e*(n)] (157)

The objective is to find the weights a;, a,, ..., 4, that minimize o’
The output g(n) is the result of the prediction error filter. Let the transfer function

of this filter be

A(z) =1 +az?t +az?2+-a,z?. (158)
The output &(n) will be approximately white noise provided that P is large. Next, the
prediction error filter is inverted such that the white noise drives a filter with the transfer

function

= _ 1 159
H(z) o (159)

and produces the output is x(n). This yields the Autoregressive (AR) model.

Mathematically, the spectrum is

o’ o’
X(2)|? = |H(z) |20} = Y = ot (160)
l I | l w ’A(Z) IZ Il+alz-l + aZZ—Z + e + apz—plz
where g2 = g2 . Equation (160) can be expressed as

x(n) + a;x(n-1) + a,x(n-2) + - ayx(n-p) = w(n) (161)
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where w(n) is the white noise sequence with variance ¢,’. Substituting equation (161)

into
El[x(n) x*(n-1)]

yields the system of equations

R,(0) + a,R (-1) + - + azR (-p)
R.(1) + a,R,(0) + - + a,R, (p-1)

R.(p) + a,R,(p-1) + - + a,R, (0)

From system theory, however,

R, (1)

but

*

R, (1) = R, (-1)

Therefore,

R_ (1) = 02 h*(-1)

e €

However, since the filter is causal,

h(-1) =0 1>0 -

Using the Initial Value Theorem to find h(0) yields

h(1)*R,(1) = h(1)*0o2 &(1)

(162)

(163)

(164)

(165)

(166)

. (167)
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lim 1
h(0) = =1 - (168)
2% 1 +a,zt +a,z?% + - +a,zP

Therefore,

R (0) = of (169)

and from equation (167)

Ry(l) =0 I>0 (170)

Equation (163) becomes

R, (0) R, (-1) =~ R.(-Dp) |1 o?
R (1) R, (0) - R.(p-1)[|a1] |og (171)
|Re(P) R (p-1) - R,(0) ||&, 0
but
R.(-1) = RI(1) 172)

This produces

R (0) R.(1) - R;(p) 1 o?
R.(1) R(0) - Re(1-p)||[%1| _|o0 . (173)
R.(p) R (p-1) - R.(0) |I%] (O

Note that the matrix is the usual covariance matrix. Therefore




179

11 [o?
a

rR| =19 (174)
ap 0

If the covariance matrix in equation (173) is estimated using a procedure that produces
a Toeplitz matrix, the coefficients can be quickly calculated using the Levinson-Durbin
algorithm [46,55]. However, since the sﬁeed of the calculation was not important, the
coefficients are found by inverting the covariance matrix. Note that the variance o,? is

unimportant since only the location of the peaks is of interest. Therefore,

1 1
2= ?1 -z (9. (175)
a, 0

Recall from equation (160) that the spectrum estimate is given by the equation

2

o
x(z2) 2 = Ld . (176)
| | |1 +a,z7t +a,z7% + + a,zP|?

This can be expressed as

- 1
P(d)) = m ¢ (177)

or




-

where

P() =

a(p)

1

a(p)iaArfa(d)

[e+jb (x,cos($) + yy,8in(d))

-

180

w TP LcOB () + yysin(9)))7

(178)

(179)




APPENDIX E

MULTIPLE SIGNAL CLASSIFICATION ALGORITHM

The MUItiple Slgnal Classification (MUSIC) algorithm is theoretically capable of
resolving two arbitrarily close signals [6,45]. This spectrum is computed by first
decomposing the covariance matrix into its eigenvalues and eigenvectors. Provided that
the signal to noise ratio is large enough, it is possible, by examining the eigenvalues and
eigenvectors, to determine which eigenvectors correspond to the signal and noise and
which to the only the noise. The noise only eigenvectors are then used to determine the
noise subspace. The pseudo spectrum is calculated by searching for the angles of arrival
that are orthogonal to the noise subspace. The result is a very accurate estimation of the
locations‘ of the sources. The spectrum calculated is not a true spectrum since size of the
peaks do not correspond to the power in the signals.

To derive the MUSIC algorithm let there be K uncorrelated sources illuminating
an M element array. The time variation in the following analysis is suppressed and is

assumed to be &', Mathematically, the signal at the i antenna element is

K
Xi(t) - E le(t) edﬁ(x,,costb + y,8iné) + Hi(t) i=1,2,...,M (180)
k=1

LS
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where
u(t) = the k™ narrow band plane wave
§ = the phase propagation constant
(x,,y.) = the location of the n" antenna element
¢ = the angle of arrival with respect to the x-axis
n(t) = the noise at the i® antenna element

For two signals, equation (180) reduces to

e+jﬁ(x1cos¢1 + y,8iné,;) elr_ﬂ!(x,_cc:scla2 + y,8iné,)

u, (t) n, (t
X(t) = : ; 1 +{ 2 )] (181)
e+jb (xyco8d, + yy sind;) e +3P (xycO8d, + yysind,) u, (t) , (t)
In matrix notation, equation (181) becomes

where
e +3 B (x,co8d; + y,8ind;) e +J P (x,cosd, + y,8ind,)

A= : ; (183)

e+j|3 (xycosd, + yysind,) e +7 B (xcosd, + yys8ind,)

The covariance matrix is given by,

R, = E[XXY] = E[(AQ + 1) (AQ + A)#] (184)

X
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Since the signals and noise are zero mean and uncorrelated with each other, equation

(184) reduces to
R, = AR A" + 02T (185)

where r = E[ZZF] o’ is the noise variance, and I is the identity matrix. Note that

-

the matrix R, is of rank K since all the sources are independent. Next, let
R, = ARA" (186)
Since A and R, are of rank K, R, is also of rank K even though its size is M x M.

Therefore, R, has K non-zero eigenvalues and (M-K) zero eigenvalues. The eigenvector

equation for R, is
R,B; = msB; (187)

where y; and B, are the eigenvalues and eigenvectors respectively of R,. The eigenvalue

4, is non-zero for i = 1,2, ..., K and zero for i = K+1, K+2, ..., M.

Now consider the expansion R.B, fori=1,2, .. M. Using equations (185)

yields

= (AR, AY + ¢?I) P, (188)

Jos|
X
o
(S
|

= AR ,AFB, + o2, (189)

2y
X
=
.
|
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Substituting equation (186) into equation (189) produces

R.PB; = R,B; + o?B,

Using equation (187) in equation (190) yields

R

xﬁi

P'iBi + o2 Bz

R.B; = (py + 0®) B,

For i = K+1, K+2, ..., M, & = 0 and equation (192) reduces to

RxBi = g2 gi i=K+1, K+2, .., M

Equating equations (189) and (193) and simplifying yields

ARAYP, =0  i=K+L K+2, ., M.

Since AR, is of rank K and AT, is a K x 1 vector

ARB, =0 i=K+1, K+2, ..., M.

Using equation (183), equation (195) can be rewritten as

B;’g(‘pk) =0 k=1,2, .., K andi=K+]1, K+2, ..., M.

(190)

(191)

(192)

(193)

(194)

(195)

(196)
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where 3 (d)k) = [e+jﬂ (x,cosdy + yy8ing) e+:lﬂ (x,cosd, + ynsind’k)] T (197)

Equation (196) states that each of the noise eigenvectors are orthogonal to the vector a(¢,)

where ¢, is one of the k™ actual angles of arrival. The MUSIC pseudo spectrum is

generated by searching for all the angles that are orthogonal to all the noise vectors ga .

Mathematically, this is given by the expression

P(§) = —— (198)
Y IBia@ |
I=K+1
where
(d) = [e'TPincosd +yysind) | | g+7B(xycosd * Yusind) 1 (199)

The vector g (¢) is referred to as the search vector or the direction vector. It should

be noted that if K is greater than M then there are no noise vectors to form the noise
subspace. In this case, the MUSIC algorithm fails.

Equation (199) yields the ideal spectrum without any mutual coupling effects. To
determine the effects of mutual coupling, the output voltage from the method of rhoments
code is used instead of the ideal voltage. Mathematically, this means that equation (182)

becomes




(200)

»i
1
o
+
a]l

where f;a is the actual voltage at the antenna terminals. This voltage is given by

equation (8). The corrected spectrum that compensates for the mutual coupling effects

is computed with -

=V, + 1 (201)

—

where v, is the corrected voltage given by equation (23).




APPENDIX F
IMPEDANCE MATRIX AND EXCITATION VECTOR
FOR THE EDGE

A hybrid technique is used to combine the method of moments with the Uniform
Theory of Diffraction [34,35]. This technique adds a matrix and a vector to the existing
moment method matrix and vector. The second matrix represents the mutual coupling
between the antenna elements and the scatterer. The second vector models the incident
field scattered by the object toward the array. The matrix is a function only of the
geometry of the antenna and scatterer while the second vector is also a function of the
angle of arrival of the incident field. This hybrid technique permits the moment method
to incorp.orate the effects of a nearby scatterer.

As shown in chapter 3, the effects of a nearby scatterer can be modeled with the

equation

mn

N
N (Zpp * Zap) I = (V, + V) m=1,2,-,N (202)
n=1

where Z_ and V are calculated from an existing MoM code [41]. The calculation of

Z8 . and V& is done using the hybrid technique that combines the moment method and
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Uniform Theory of Diffraction [34,35]. The geometry used to determine Z8_, and V& _

Ty

X
v

Figure 111: Geometry for Determining Z8_ , and V%,
for a near field edge is shown in figure 111

where 7/ = vector from the origin to a point on the segment of the edge.

7 = vector from the origin to the observation point

vector from origin to one end of a segment

¥ = vector along the direction of the edge

R, = vector from one end of a segment on the edge to the observation point
R = vector from the point on the edge to the observation point

a, = unit vector in the direction of radiation from the antenna element.

The observation point shown is arbitrary but is actually on the dipole array for this

particular problem. Equivalent currents and UTD are used to calculate the field scattered
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by the edge. Since the observation point is, in general, in the near field of the edge, the
edge is broken up into segments such that the obse&ation point is in the far field of each
segment. The far field radiation integral is then used to compute the field scattered by
the edge. For the impedance matrix Z%,, the direction of propagation is from one mode
on one of the antenna elements and the observation point is on any one of the elements.

For the vector V&_, the incident field is used instead of E°, and the direction of arrival is

used for a; -

To assist in the calculation of the field scattered by the edge, the vector V is

defined as

/ -FBR
=_1_f Ue av (203)
4 [4

where R is shown in figure 111, B is the propagation constant, I is the equivalent electric
or magnetic current on the edge, and the integration is along the length, ¢, of the edge.

Using this vector, the magnetic and electric vector potentials are respectively

F=eV(IM (205)

where I° and I™ are the equivalent electric and magnetic current on the edge. To find the

scattered field, the usual far field approximations are used. From figure 111, the distance
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in the denominator of (203) may be approximated by R,,. For the phase,

R= (-2 = 7-(R+1) = (F-R) -V

but

Ro=7-F
Therefore

R=R, -7

The magnitude of R is

IR = [(R,,-1)- uyo—iﬂlz = [R%0-2F - T+ W]Z

Using the Binomial expansion, the magnitude of R is

- ~

lﬁl = Ryjg— Ry [

Using this in (203), the vector potential becomes,

jﬂ 10
41tR10

§¢
L
I

fI () e +IB Ry wda/

The equivalent electric current is given by the expression [50]

(206)

(207)

(208)

(209)

(210)

(211)
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o) = -e'ji(fz‘i(co) D, eI g (212)

where 7| is the intrinsic impedance of free space, D, is the soft or parallel diffraction

coefficient of the edge, 7 L (0,) is the incident electric field at ¢ on the edge and g f

and ¢ are defined in figure 111. Substit;ting this expression into (211) yields,

-, —jBR1° - —j'z -, I. ﬁ -0
v(re = £ ( VB"B)e C(E 0,) DD, U[e?P Rl gy (213)
41tR10 T]ﬁ i'%o s ‘!’.

After performing the integration and substituting into (204) the magnetic vector potential

becomes,
Al
/BR n At sin(f,—=)
- —P 81: eJ 10 j4 j(p.z) 2 214
e (B, (¢,) - 1)p, 1 (A0) A0 (214)
Bo=)
2
where
B, =Bl (R,- 0, (215)
Similarly, the equivalent magnetic current is
- 4E _4p1 - | )
Fo) = -8B 7T (5 (1) 1)D,e PP U] (216)

P
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where A, (8,) is the incident magnetic field on the edge, and D, is the hard or

perpendicular diffraction coefficient. Combining (216), (211), and (205) yields

Aty

. - -IBRy -3 E (B, Al sin(p
F-zenBaBe T Ty g )., 0e’ 2 (A) — 2 (217)
B4mR,, (p.AL

2
The far field due to equivalent electric current on the edge is
E, = -jw [A- (AR) R i, = %[ﬁ x B, (218)

where the radial component of E, has been subtracted out to yield the far field.

Similarly the far field due to the equivalent magnetic current is

-

Hy = -jJo[F-(FR)Rl E,=nlH. xR - (219)

Since only the electric field affects the wire, the scattered field at the antenna is

-

E

scat

= -jwA + jo (AR)R - jon (F x R) (220)

A

Since the observation point is in the far field, £ = R, - This substitution is made

~

because g varies along the segment of the edge while R, is constant for each

segment. Therefore, the electric field scattered by the edge is

Eoae = ~J0A + jo (AR Ry - jon (F x Ry,) (221)

scact
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where 7 isgivenby (214)and F by (217). This expression is used to compute both

78

w and Ve For Z%,, E (¢)) in (214) and A, () in (217) are from the
piecewise sinusoidal currents on the antenna. For V& these fields are from the incident
plane waves.

1.1 Computer Program Validation:

The dipole array with the nearby edge is programmed in FORTRAN using the
method of moments as desgribed previously. Instead of writing the entire code from
scratch, an existing thin wire method of moments code is used to model the antenna
without the edge [41]. This code can model almost any thin wire antenna and has been
validated with several problems. Therefore, it is only necessary to write subroutines to
include Z8__ and V&_ of (202) and incorporate them into the program. The final program
is validated by comparing the results to previously published work.

There are several antenna parameters such as gain, radiation pattern, and input
impedance that may be used to validate an antenna code. While the gain and radiation
pattern are not very sensitive to modeling errors, it is well known that the input
impedance is very sensitive to the antenna model [35]. Therefore, this parameter is used
to validate the computer code.

The input impedance is calculated by operating the antenna in the transmitting
mode. In this mode the voltage used to excite the antenna is divided by the camplex
current at the antenna terminals. This operating condition is slightly different from the

receiving mode used to determine the angles of arrival. However, it serves to adequately
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v

Figure 112: Dipole with Nearby Edge
validate the code since, from a programming point of view, it is only a slightly different
problem.

To validate the computer code, the input impedance of the antenna in figure 112
is calculated. In this problem, a A/2 vertical dipole is placed just above a perfectly
conducting surface. This surface extends to infinity in one direction but bends by 90° in
the other direction. At the bend, the horizontal edge is 20 wavelengths long. This is very
similar to the problem in [35, pp. 502-504] in which an infinitely long edge is near a
monopole mounted on a perfectly conducting surface. In [35] is shown that as the edge
is moved away from the monopole, the input impedance oscillates about the valu; of the
monopole on an infinite ground plane. For this problem in figure 112, the input

impedance should vary in the same manner.
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Figures 113 and 114 shows the real and imaginary parts of the input impedance
as a function of ’d’ for the problem in figure 112. Notice that as the edge is moved away
from the dipole, the impedance oscillates as expected. Notice also that the oscillations
decay as the edge is moved away from the dipole. This is expected since the edge will
naturally have less effect on the dipole. In the limit as ’d’ approaches infinity, the input
impedance is equal to the no edge case. These graphs are very similar to the impedance
graphs for the monopole on a perfectly conducting surface with a nearby edge [35, p.

504].
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